

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA LICENCIATUTA EM FÍSICA

A PROPAGAÇÃO DE ONDAS DENTRO DE UM MATERIAL CONDUTOR NA ELETRODINÂMICA DE BORN-INFELD

GUILHERME RAFAEL FERREIRA DOS SANTOS

ORIENTADOR : MARIO JUNIOR DE OLIVEIRA NEVES

SEROPÉDICA, RJ 2023

A PROPAGAÇÃO DE ONDAS DENTRO DE UM MATERIAL CONDUTOR NA ELETRODINÂMICA DE BORN-INFELD

Monografia apresentada ao Curso de Graduação em Física da UFRRJ, como requisito parcial para obtenção do título de Licenciado em Física

SEROPÉDICA, RJ 2023

UFRRJ UNITEVANOV FEDERAL RUPAL DO HO DE JANFRO	UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS COORDENAÇÃO DO CURSO DE FÍSICA
ATA DI MODALI	E DEFESA DE MONOGRAFIA 2023 IDADE: LICENCIATURA EM FÍSICA
PRESENTAÇÃO : itulo da Monografia: "A P ONDUTOR NA ELETRODINA Nome do Aluno: Guilherme Rafa Matrícula: 2017185068 Nome do Orientador: Mario Jur Nome do Co-orientador: Não pu Data da Apresentação: 27/07/20 Horário: 10:30h Local: Sala de Instrumentação, F de Seropédica	PROPAGAÇÃO DE ONDAS DENTRO DE UM MATERIAL ÂMICA DE BORN-INFELD" ael Ferreira dos Santos nior de Oliveira Neves ossui 123 Prédio de aulas práticas da Física II, DEFIS/ICE/UFRRJ – Campus
COMPOSIÇÃO DA BANCA: residente / Orientador: Mario	Junior de Oliveira Neves
fe nbro Titular: Rodrigo de So	usa Gonçalves
fembro Titular: Leandro Româ	ăo Fernandes Lima
Membro Titular: Lucas Modesto	o da Costa
AVALIAÇÃO DO CANDIDATO	0:
(Aprovado () Aprovado com correções () Não Aprovado
	Seropédica, 27 de julho de 2023
Marin J	Seropédica, 27 de julho de 2023 V • Jul J • ANNS Presidente / Orientador

Jamon R. F. Jans Membro Titular Jucas Moclusto Va Costa . Membro Titular

Agradecimentos

Em primeiro lugar agraço a Jesus, por toda a força e sustentação até aqui, sem ele nada disso seria possível, amo você, obrigado Jesus!

Também agradeço o amor, compreensão, sustento e incentivo dos meus pais, Marcio Ferreira dos Santos e Raimunda Ferreira de Abreu, vocês foram fundamentais nesse processo, obrigado.

Agraço a minha esposa Jennifer Cruz de Souza, por sempre me apoiar, amar, auxiliar e estar sempre ao meu lado independente de qualquer coisa, muito obrigado meu amor! Além disso, não tem como não agradecer a vida dos meus sogros e amigos, Adriana Pessanha e Vicente Cruz, sem vocês não conseguiria ter chegado até aqui, muito obrigado por tudo.

Agradeço a minha grande amiga Brenda Borba e toda a sua família, Fábio Borba, Adriana Borba e Eloah Borba, a qual me apoiou, alegrou e orientou durante esses anos. Agradeço meus amigos que sempre me apoiam, Wendel Alvarenga, Daniel Ferreira, Wesley Lima, Yuri Cardoso, João Pedro e Jonatas Coelho. Também Agradeço a todos os moradores do alojamento M2 quarto 226, vocês foram minha segunda família, em especial, meu amigo Jorge Luiz, por toda força e ensinamento. Agradeço a vida de todos da igreja Assembleia de Deus da Grama, em especial o pastor Jaime Mello e sua família, sem eles não conseguiria ter forças para ter chegado até aqui.

Agradeço ao professor Doutor Mario Junior, que sempre esteve disposto a me orientar e ajudar, durante toda a monografia, obrigado professor. Também agradeço ao professor Cláudio Maia por ter me ajudado durante esse tempo de graduação, obrigado professor.

Por fim, agradeço a Universidade Federal Rural do Rio de Janeiro, que me proporcional a oportunidade de está finalizando um curso de excelência. E agradeço também ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) que financiou essa pesquisa.

Agradeço a todos que me ajudam direta e indiretamente. Amo todos vocês.

Resumo

Neste trabalho será desenvolvido a eletrodinâmica não-linear (NLED) de Born-Infeld, para isso, será revisado a eletrodinâmica de Maxwell destacando os invariantes de Lorentz e o formalismo Lagrangeano. Mostramos como o caminho da formulação de uma NLED genérica, com isso, obtém-se as equações de movimento de qualquer NLED. A partir disso, aplica-se o Lagrangiano de Born-Infeld, nas equações de movimento obtidas, assim, tem-se a eletroestática de Born-Infeld, obtendo o campo elétrico, o potencial elétrico e a correspondente energia potencial.

Por meio das equações de campo, adquiri-se o tensor energia-momento na eletrodinâmica de Born-Infeld, que carrega consigo a auto-energia do elétron, o vetor de Poynting e o tensor pressão de Born-Infeld. A seguir, introduzimos a prescrição de linearização de uma eletrodinâmica não-linear na qual um campo magnético (**B**) externo tem papel fundamental. Assim, a linearização é aplicada para o caso de Born-Infeld. Com isso, propomos que as soluções de ondas planas para as equações linearizadas, e estudamos as propriedades da propagação de onda, como o indíce de refração do meio e o fenômeno da birrefringência. Usando a lei de Ohm, estudamos a dispersão e absorção de ondas planas num meio material submetido à um campo magnético externo. O caso da densidade de corrente com condutividade magnética também é estudado.

Conteúdo

Сс	onteú	do		
1	Intro	odução	1	
2	Eletrodinâmica não-linear			
	2.1	Revisão das equações de Maxwell	4	
	2.2	As EDs não lineares	9	
	2.3	Exemplos de EDs não lineares	12	
		2.3.1 Exemplos de outros eletrodinâmicas não-lineares na literatura	16	
3	As leis de conservação na ED de Born Infeld			
	3.1	O tensor energia-momento	18	
4	Propagação das ondas num material condutor na ED de Bl			
	4.1	Linearização da ED de Born-Infeld na presença de um campo magnético		
		externo	24	
	4.2	Propagação de ondas no condutor Ohmico na ED de BI	25	
	4.3	Propagação de ondas no condutor de corrente magnética na ED de BI	29	
5	Con	clusão	34	
Re	ferên		36	

1 Introdução

Sabe-se que o eletromagnetismo é uma das forças fundamentais da natureza, que descreve todos os fenômenos associados à carga elétrica na escalas macroscópica e microscópica. A eletricidade e o magnetismo eram tratados como áreas completamente distintas até o início do século XIX. O primeiro relato datado do fenômeno elétrico foi na Grécia Antiga, pelo filósofo Tales de Mileto (640-550 a.C), que observou que ao atritar o âmbar com a pele de carneiro, alguns objetos eram atraídos pelo âmbar. Após isso, o primeiro artigo sobre os estudos das cargas elétricas, só foi publicado séculos depois, por H. Cavendish, que mediu experimentalmente a Lei de Coulomb, chamada assim em homenagem a Charles Augustin de Coulomb (1736-1806). Foi o primeiro trabalho publicado com resultados quantitativos, a respeito dos efeitos elétricos.

Contudo, só na Idade Contemporânea que a eletricidade foi estabelecida, por Michael Faraday (1791-1867), que ficou conhecido como o pai da eletricidade, entre várias das suas descobertas, uma delas foi a Lei de Faraday-Lenz. Pela primeira vez na história, consegue-se unificar a eletricidade e o magnetismo experimentalmente. Se apoiando nos resultados de Faraday, André Marie Ampère (1775-1836) e James Clerk Maxwell (1831-1879), iniciaram a descrição matemática do eletromagnetismo, conhecida atualmente como as equações de Maxwell. Compostas por quatro equações, chamadas de Lei de Gauss, Lei da ausência de monopólios, Lei de Faraday-Lenz e a Lei de Ampère-Maxwell. Com isso, Maxwell observou que além de conseguir descrever matematicamente os campos, elétricos e magnéticos, havia uma simetria de dualidade entre os campos, e ao analisar as ondas de campo, percebeu que se propagavam com velocidade finita c, no vácuo, $c = 3 \times 10^8 m/s$. Maxwell revolucionou a visão da eletricidade e do magnetismo, unificando estas teorias, que deu o nome de eletromagnetismo de Maxwell. Claro que sua teoria foi desenvolvida e aprimorada com o decorrer do tempo e impactou diretamente no surgimento da física moderna e contemporânea, que compreendemos hoje. Albert Einstein (1879-1955) publica seu trabalho intitulado Sobre a eletrodinâmica dos corpos em movimento (1905), com base nos trabalhos de Maxwell, a fim de desenvolver a Teoria da Relatividade Restrita, além disso, observou que o eletromagnetismo é essencialmente uma teoria relativística, e propôs extrair as propriedades relativísticas das equações de Maxwell.

A eletrodinâmica de Maxwell descreve com boa aproximação os fenômenos eletromagnéticos para campos elétricos e magnéticos fracos. Para sistemas físicos de campos muito intensos, como Buracos Negros e estrelas de nêutrons, as soluções teóricas indicam que as eletrodinâmicas não-lineares podem descrever tais sistemas. Com isso, diversas eletrodinâmicas não-lineares, *eletrodinamica não-linear* (NLED), têm sido propostas na literatura. Nesse trabalho, será desenvolvida a eletrodinâmica de Born-Infeld, a qual foi publicada em 1934 por Max Born, para solucionar o problema da divergência da carga elétrica na origem, motivado pelos resultados da mecânica quântica a obter um valor finito para a auto-energia do elétron. Com isso, Born propôs uma NLED para compreender, o porquê na mecânica clássica a auto-energia no elétron era então divergente.

Esse trabalho é baseado nas propriedades da eletrodinâmica de Maxwell. Visto isso, no segundo capítulo, é apresentada uma revisão das equações de Maxwell, os potenciais escalar e vetor associados aos campos elétricos e magnéticos, e as transformações de calibre. Após isso, um breve resumo a respeito da Teoria da Relatividade Restrita é mostrado, iniciando com as transformações de Lorentz, as notações de Einsten, os quadrivetores e a notação covariante do eletromagnetismo. Dessa forma, aplica-se a formulação de Euler-Lagrange para o campo de Maxwell, para obter o correspondente lagragiano. Em seguida, foi desenvolvida eletrodinâmica de Maxwell para um meio material, abordou-se, os tensores de deslocamento elétrico e polarização magnética, e por fim, o lagrangiano de Maxwell para um meio material. Além disso, foi possível escrever as equações de movimento por meio deste lagrangiano no caso de um meio material. Posteriormente, desenvolveu-se a criação de uma NLED genérica, com um lagrangeano, invariante de Lorentz e pelas transformações de calibre. Expandindo o lagrangeano genérico em série de MacLauren, trunca-se a série até o termo quadrático, os coeficientes são definidos de acordo com os invariantes. A fim de recuperar o lagrangeano de Maxwell, conforme se afastar do campo. Assim, adquire-se as equações de movimento de qualquer NLED. Na seção seguinte, será aplicado o lagrangeano proposto para uma NLED geral, e como exemplo, desenvolve-se para o caso da ED de Born-Infeld. Obtém-se então o campo elétrico, potencial elétrico e a energia potencial na eletrostática de Born-Infeld. Além disso, mostramos brevemente outros exemplos de NLED, que são bem discutidas na literatura.

No terceiro capítulo, abordamos as leis de conservação na ED de Born-Infeld. A conservação da carga elétrica é expressa no formalismo covariante. Após isso, de posse das equações de campo, e do Lagrangiano de Born-Infeld, chegou-se ao tensor energiamomento. Ademais, três grandezas físicas de suma importância são extraídas do tensor energia-momento, como a densidade de energia do campo, o vetor de Poynting, e o tensor de pressão de Born-Infeld.

No quarto capítulo, iniciou-se o estudo da propagação de ondas num condutor na NLED de Born-Infed. A prescrição de linearização da teoria é introduzida por meio de um campo magnético externo, que consideramos uniforme e constante. Com isso, obtevese as equações de campo linearizadas, e propomos as soluções de ondas planas. A fim de compreender como as ondas se comportam dentro dos materiais, utilizamos a Lei de Ohm, e posteriormente, a Lei de condutividade magnética. As soluções para os índices de refração no meio material são obtidos, assim como as propriedades de absorção da onda. Com isso, foi possível analisar como a direção que o campo magnético externo faz com a direção de propagação da onda, que modifica o índice de refração do meio material.

2 Eletrodinâmica não-linear

2.1 Revisão das equações de Maxwell

1

 ∇

As equações de Maxwell são fundamentais para a compreensão dos fenômenos eletromagnéticos. Por meio delas, é possível descrever a propagação dos campos elétrico e magnético no espaço-tempo. Em primeiro momento, essas equações são apresentadas no curso de Física 3, na forma integral. Contudo, no curso de eletromagnetismo I, utilizando-se dos teoremas do rotacional e do divergente, as equações de Maxwell da forma diferencial são

$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho$$
, (Lei de Gauss) (2.1)

$$\nabla \cdot \mathbf{B} = 0$$
, (Lei da ausência de monopolos magnéticos) (2.2)

$$\times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},$$
 (Lei de Faraday-Lenz) (2.3)

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
. (Lei de Ampère-Maxwell) (2.4)

Note que, as equações de Maxwell podem ser restringidas ao vácuo no caso das fontes nulas, ou seja, $\rho = 0$ e $\mathbf{J} = \mathbf{0}$. As duas primeiras equações têm propriedades estáticas, se as fontes são estáticas, enquanto que as duas últimas são manifestados os efeitos da eletrodinâmica. A primeira é conhecida como a Lei de Gauss, trata-se do campo elétrico independente do tempo (estacionário), onde, a distribuição de carga ρ , é a fonte do campo elétrico. A segunda, é a lei da ausência de monopólios magnéticos, ou Lei de Gauss do magnetismo, pois não há observação de cargas magnéticas. Contudo, há diversas pesquisas no ramo teórico e experimental nos quais a equação (2.2) do tipo Lei de Gauss, mas com uma distribuição de carga magnética ρ_m . A Lei de Faraday-Lenz, que descreve a variação do campo magnético com o tempo, gerando o rotacional do campo elétrico, é a primeira Lei que relaciona o campo elétrico com o campo magnético. A importância disso, está na geração da corrente induzida pela variação do campo magnético com o tempo. Por fim, a Lei de Ampère-Maxwell, onde a variação temporal do campo elétrico somada à densidade corrente, gera um rotacional do campo magnético.

Usando a equação (2.2), pode-se definir um novo potencial, já que quando o rotacional de um campo é nulo, sempre é possível obter um potencial associado a este campo. Logo, postulou-se o potencial vetor, utilizando as transformações de calibre,

$$\mathbf{B} = \nabla \times \mathbf{A} \,, \tag{2.5}$$

onde, \mathbf{A} é conhecido como potencial vetor, trazendo uma descrição completa dos campos, por meio dos potenciais,

$$\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \qquad (2.6a)$$

$$\mathbf{B} = \nabla \times \mathbf{A}. \tag{2.6b}$$

Com estas relações, é possível escrever as equações de campo em termos dos potenciais para a descrição das ondas eletromagnéticas.

Em 1905, Einstein propôs a teoria da relatividade restrita, mostrando que as transformações de coordenadas de Galileu, deveriam ser substituídas pelas transformações de Lorentz (TLs), para partículas movendo-se próximas da velocidade da luz (c) no vácuo :

$$t' = \gamma(v) \left(t - \frac{v}{c} x \right) , \qquad (2.7a)$$

$$x' = \gamma(v) (x - vt) , \qquad (2.7b)$$

$$\mathbf{y}' = \mathbf{y}, \qquad (2.7c)$$

$$z' = z, \qquad (2.7d)$$

onde o fator de Lorentz $\gamma(v)$ é definido por

$$\gamma(\nu) = \frac{1}{\sqrt{1 - \beta^2}} , \qquad (2.8)$$

onde $\beta = v/c$ é a razão das velocidades. Observe, no limite $v/c \ll 1$, as transformações de Galileu são recuperadas.

Com isso, as TLs, permitem escrever as coordenadas espaciais e temporal, em um único vetor com quatro componentes, denominado quadri-vetor contravariante $x^{\mu} = (ct, \mathbf{r})$, onde $\mu = \{0, 1, 2, 3\}$. Dessa forma, pode-se escrever as TLs na forma matricial,

$$x^{\mu} = \Lambda^{\mu}_{\mathcal{V}} x^{\mathcal{V}} . \tag{2.9}$$

Segundo a notação de Einstein, os índices repetidos são contraídos e Λ^{μ}_{v} é a matriz das TLs,

$$\Lambda = \begin{bmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (2.10)

Isso para uma TL ao longo do eixo X, onde um referencial inercial se move em relação a outro com velocidade constante v ao longo da direção X. Assim, escreve-se os quadrivetores com grandezas de mesma natureza, e que se transformam de formas semelhantes, de um referencial inercial para outro. Forma-se os quadri-vetores contravariantes para o eletromagnetismo, obedecendo os postulados da relatividade,

$$\mathbf{J}^{\mu} = (c\mathbf{\rho}, \mathbf{J}), \qquad (2.11a)$$

$$\mathbf{A}^{\mu} = \left(\frac{\Phi}{c}, \mathbf{A}\right), \tag{2.11b}$$

$$\partial^{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\nabla\right).$$
 (2.11c)

Por meio da métrica de Minkowski, onde a diagonal principal tem o primeiro termo positivo (+1) e os demais negativos (-1). Os elementos fora do traço são nulos, $a_{ij} = 0$ para $i \neq j$, logo, $\eta \equiv \text{diag}(1, -1, -1, -1)$. Com isso, define-se o quadri-vetor covariante e as operações de levantar e abaixar índices, $x_{\mu} \equiv \eta_{\mu\nu} x^{\mu}$.

A partir disto, encontra-se as equações de Maxwell na forma covariante, com os potenciais A^{μ} sendo a base do Tensor antissimétrico de campo

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} , \qquad (2.12)$$

e observe que este é invariante sob as transformação de calibre. As componentes do tensor $F^{\mu\nu}$ definem a matriz de campo eletromagnético

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E^{x}/c & -E^{y}/c & -E^{z}/c \\ E^{x}/c & 0 & -B^{z} & B^{y} \\ E^{y}/c & B^{z} & 0 & -B^{x} \\ E^{z}/c & -B^{y} & B^{x} & 0 \end{pmatrix}.$$
 (2.13)

Para o caso sem fontes, as equações de Maxwell apresentam a simetria de dualidade dos campos: $\mathbf{E}/c \rightarrow \mathbf{B} \in \mathbf{B} \rightarrow -\mathbf{E}/c$. Dessa forma, a simetria de dualidade nos permite definir o tensor dual $\widetilde{F}^{\mu\nu}$,

$$\widetilde{F}^{\mu\nu} = \begin{pmatrix} 0 & -B^{x} & -B^{y} & -B^{z} \\ B^{x} & 0 & E^{z}/c & -E^{y}/c \\ B^{y} & -E^{z}/c & 0 & E^{x}/c \\ B^{z} & E^{y}/c & -E^{x}/c & 0 \end{pmatrix}.$$
(2.14)

Importante ressaltar, que o tensor dual também invariante de calibre. Define-se o tensor dual como

$$\widetilde{F}_{\mu\nu} = \frac{1}{2} \varepsilon^{\mu\nu\alpha\beta} F^{\alpha\beta}, \qquad (2.15a)$$

$$\partial_{\mu}F^{\mu\nu} = \mu_0 J^{\nu} , \qquad (2.16)$$

e as sem fontes,

$$\partial_{\mu}\widetilde{F}^{\mu\nu} = 0 , \qquad (2.17)$$

Com o uso da (2.17), obtém-se a identidade de Bianchi,

$$\partial_{\mu}F_{\rho\lambda} + \partial_{\rho}F_{\lambda\mu} + \partial_{\lambda}F_{\mu\rho} = 0. \qquad (2.18)$$

A equação com fontes (2.16), engloba as Leis de Gauss da eletrostática, e de Ampère-Maxwell. Por conseguinte, a identidade de Bianchi inclui as Leis de Gauss do magnetismo e de Faraday-Lenz. Com as propriedades relativísticas dos campos elétrico e magnético, é possível definir as quantidades invariantes de Lorentz. O produto escalar entre dois quadri-vetores é um invariante, ele tem sempre o mesmo valor em qualquer referencial inercial, ou seja,

$$A_{\mu}A^{\mu} = A_{\mu}A^{\mu} . (2.19)$$

Os invariantes de Lorentz, por definição, são independentes do referencial, e são formados pelos tensores $F^{\mu\nu}$ e $\tilde{F}^{\mu\nu}$,

$$\mathscr{F} \equiv -\frac{1}{4\mu_0} F^{\mu\nu} F_{\mu\nu} = \frac{1}{2} \left(\varepsilon_0 \mathbf{E}^2 - \frac{\mathbf{B}^2}{\mu_0} \right), \qquad (2.20a)$$

$$\mathscr{G} \equiv -\frac{1}{4\mu_0} F^{\mu\nu} \widetilde{F}_{\mu\nu} = \sqrt{\frac{\varepsilon_0}{\mu_0}} \mathbf{E} \cdot \mathbf{B}.$$
(2.20b)

Com os invariantes de Lorentz, consegue-se escrever a densidade do lagrangeano do campo, por meio da equação de Euler-Lagrange

$$\partial_{\mu} \frac{\partial \mathscr{L}}{\partial (\partial_{\mu} A_{\nu})} = \frac{\partial \mathscr{L}}{\partial A_{\nu}} . \tag{2.21}$$

Assim, consegue-se definir o Lagrangeano de Maxwell, invariante de Lorentz e pelas transformações de calibre :

$$\mathscr{L}_{M}(A_{\mu},\partial_{\mu}A_{\nu}) = -\frac{1}{4\mu_{0}}F_{\mu\nu}F^{\mu\nu} - J_{\mu}A^{\mu}, \qquad (2.22)$$

em termos dos campos E e B, temos

$$\mathscr{L}_{M}(A_{\mu},\partial_{\mu}A_{\nu}) = \frac{1}{2}\left(\varepsilon_{0} \mathbf{E}^{2} - \frac{\mathbf{B}^{2}}{\mu_{0}}\right) - \phi\rho + \mathbf{A} \cdot \mathbf{J}.$$
(2.23)

Dessa forma, será possível obter as equações de movimento, com base no lagrangeano anterior.

Contudo, não se definiu como o eletromagnetismo de Maxwell se comporta num meio material. Ainda no formalismo covariante, tem-se os tensores de deslocamento elétrico e de polarização magnética :

$$D^{\mu\nu} = \begin{pmatrix} 0 & -cD_x & -cD_y & -cD_z \\ cD_x & 0 & -H_z & H_y \\ cD_y & H_z & 0 & -H_x \\ cD_z & -H_y & H_x & 0 \end{pmatrix}, \qquad (2.24a)$$
$$M^{\mu\nu} = \begin{pmatrix} 0 & cP_x & cP_y & cP_z \\ -cP_x & 0 & -M_z & M_y \\ -cP_y & M_z & 0 & M_x \\ -cP_z & -M_y & M_x & 0 \end{pmatrix}. \qquad (2.24b)$$

A partir desses tensores, consegue-se descrever a distribuição de cargas e corrente, que advém da polarização $\nabla \cdot \mathbf{P} = -\rho_p$, onde **P** é o vetor de polarização e ρ_p é a distribuição de cargas polarizadas

$$J_b^{\nu} = \partial_{\mu} M^{\mu\nu} , \qquad (2.25)$$

onde J_b^{ν} é a corrente associada às cargas livres. Desenvolvendo esse tensor, encontra-se o quadri-vetor densidade de cargas e correntes polarizadas,

$$J_b^{\mathbf{v}} = (-c\mathbf{\rho}_p, \mathbf{J}_p) \,. \tag{2.26}$$

Além disso, com a equação (2.26) recupera-se o vetor densidade elétrica e o campo auxiliar **H**

$$\mathbf{D} \equiv \mathbf{\epsilon}_0 \mathbf{E} + \mathbf{P}, \qquad (2.27a)$$

$$\mathbf{H} \equiv \frac{\mathbf{B}}{\mu_0} - \mathbf{M}, \qquad (2.27b)$$

onde P é o vetor polarização, e M o vetor magnetização. Consegue-se, estabelecer as equações de Maxwell em meio material, na forma covariante,

$$\partial_{\mu}D^{\mu\nu} = J^{\nu} . \tag{2.28}$$

Assim, pode-se escrever o lagrangeano de Maxwell para o meio material, de forma análoga ao vácuo,

$$\mathscr{L} = -\frac{1}{4\mu_0} F^{\mu\nu} F_{\mu\nu} - A_{\mu} J_f^{\mu} + \frac{1}{2} F^{\mu\nu} M_{\mu\nu} , \qquad (2.29)$$

que em termos dos campos e dos vetores de polarização é

$$\mathscr{L} = \frac{\varepsilon_0}{2} \mathbf{E}^2 - \frac{\mathbf{B}^2}{2\mu_0} - \phi \rho + \mathbf{A} \cdot \mathbf{J}_f + \mathbf{E} \cdot \mathbf{P} + \mathbf{B} \cdot \mathbf{M} \,. \tag{2.30}$$

Por meio do lagrangeano, é possível definir algumas relações de extrema relevância para o desenvolvimento das NLEDs. Com isso, define-se o tensor de deslocamento elétrico como a derivada do Lagrangiano pelo tensor de campo

$$D^{\mu\nu} = \frac{\partial \mathscr{L}}{\partial F_{\nu\mu}} \,. \tag{2.31}$$

Além disso, o vetor deslocamento elétrico e campo auxiliar **H**, podem ser descritos pelas derivações

$$\mathbf{D} = \frac{\partial \mathscr{L}}{\partial E}, \qquad (2.32a)$$

$$\mathbf{H} = -\frac{\partial \mathscr{L}}{\partial B} \,. \tag{2.32b}$$

Ademais, o tensor polarização e magnetização, em termos do lagrangeano é

$$M^{\mu\nu} = \frac{1}{\mu_0} F^{\mu\nu} - \frac{\partial \mathscr{L}}{\partial F_{\nu\mu}} .$$
(2.33)

O lagrangeano é a base da teoria clássica de campo, a partir dele, é possível obter as equações de movimento de quaisquer eletrodinâmicas não-lineares. Na próxima seção, será abordado o processo de construção de uma NLED genérica.

2.2 As EDs não lineares

A eletrodinâmica de Maxwell é essencialmente uma teoria relativística, invariante via transformações de calibre, e com equações de movimento lineares nos campos. Até o momento neste trabalho, foi apresentado apenas a eletrodinâmica linear, a partir disso, daremos início ao estudo das teorias não-lineares do eletromagnetismo. Existem diversos tipos de NLEDs, entre elas estão, Born-Infeld, Euler-Heisenberg, logarítmica, exponencial e outras, nas quais, cada teoria tem seu próprio lagrangeano, com equações de movimento não lineares nos campos. Importante ressaltar, que o formalismo clássico de campos da eletrodinâmica de Maxwell é baseado nos invariantes de Lorentz, como já foi observado acima. A criação para qualquer nova eletrodinâmica, precisa respeitar os mesmos critérios. Com isso, postula-se um Lagrangiano genérico, que seja invariante, as transformações de calibre e de Lorentz \mathcal{F} e \mathcal{G} . Ademais, a expressão analítica para um lagrangeano não-linear mais geral é

$$\mathscr{L}(\mathscr{F},\mathscr{G}) = \sum_{i,j=0}^{\infty} c_{ij} \,\mathscr{F}^i \,\mathscr{G}^j \,. \tag{2.34}$$

No caso de sistemas físicos de campos intensos, as propriedades da NLED são cada vez mais relevantes. No limite para campos fracos, volta-se para o regime da eletrodinâmica de Maxwell. Expandindo os termos da série, temos

$$\sum_{i,j=0}^{\infty} c_{ij} \,\mathscr{F}^i \,\mathscr{G}^j = c_{00} + c_{10} \,\mathscr{F} + c_{01} \,\mathscr{G} + \dots \,.$$
(2.35)

Analisa-se as constantes, c_{00} pode ser nula pois é apenas uma número, o $c_{01} = 0$ e $c_{10} = 1$ são definições essenciais para recuperação do lagrangeano de Maxwell. Se consideramos o vácuo como invariante, por transformação de inversão de carga (*C*), paridade (*P*) e tempo (*T*), sempre que houver transformação de *P* ou *T*, o invariante \mathscr{G} muda o sinal, pois está associado ao tensor de Levi-Civita. Para manter a invariância de \mathscr{G} , será colocado que \mathscr{G} sempre tenha expoente par, logo, o índice *j* representa sempre um número par. Com isso, obtêm-se o lagrangeano com as devidas invariâncias de CPT.

$$\mathscr{L}(\mathscr{F},\mathscr{G}) = \mathscr{F} + c_{20}\,\mathscr{F}^2 + c_{02}\,\mathscr{G}^2 + c_{12}\,\mathscr{F}\,\mathscr{G}^2 + c_{30}\,\mathscr{F}^3 + \dots$$
(2.36)

Numa primeira aproximação, é permitido truncar a série nos termos de segunda ordem, se considerarmos os coeficientes muito pequenos. Então, o lagrangeano aproximado para qualquer NLED genérica é

$$\mathscr{L}(\mathscr{F},\mathscr{G}) = \mathscr{F} + c_{20} \,\mathscr{F}^2 + c_{02} \,\mathscr{G}^2.$$
(2.37)

O lagrangeano de Born-Infeld para o campo crítico muito grande, é um exemplo de nãolinearidade aproximada de (2.37).

No caso de uma NLED geral, o lagrangeno na presença de fontes é

$$\mathscr{L} = \mathscr{L}(\mathscr{F}, \mathscr{G}) - A_{\mu} J^{\mu} .$$
(2.38)

Com o uso da equação de Euler-Lagrange, (2.21), utilizando a (2.38), tem-se as equações de movimento de qualquer NLED,

$$\partial_{\mu} \left(\frac{\partial \mathscr{L}(\mathscr{F},\mathscr{G}) - A_{\mu} J^{\mu}}{\partial(\partial_{\mu} A_{\nu})} \right) = \frac{\partial \mathscr{L}(\mathscr{F},\mathscr{G}) \partial(A_{\mu} J^{\mu})}{\partial A_{\nu}},$$

$$\partial_{\mu} \left(\frac{\partial \mathscr{L}(\mathscr{F},\mathscr{G}))}{\partial(\partial_{\mu} A_{\nu})} - \frac{\partial(A_{\mu} J^{\mu})}{\partial(\partial_{\mu} A_{\nu})} \right) = \frac{\partial \mathscr{L}(\mathscr{F},\mathscr{G}) - \partial(A_{\mu} J^{\mu})}{\partial A_{\nu}}, \qquad (2.39)$$

Usando a regra da cadeia do lado esquerdo na (2.39),

$$\partial_{\mu} \left(\frac{\partial \mathscr{L}}{\partial \mathscr{F}} \frac{\partial \mathscr{F}}{\partial (\partial_{\mu} A_{\nu})} + \frac{\partial \mathscr{L}}{\partial \mathscr{G}} \frac{\partial \mathscr{G}}{\partial (\partial_{\mu} A_{\nu})} - \frac{\partial (A_{\mu} J^{\mu})}{\partial (\partial_{\mu} A_{\nu})} \right) = \frac{\partial \mathscr{L}(\mathscr{F}, \mathscr{G}) - \partial (A_{\mu} J^{\mu})}{\partial A_{\nu}} . (2.40)$$

Desenvolve-se apenas a derivada, $\frac{\partial \mathscr{F}}{\partial(\partial_{\mu}A_{\nu})}$, substituindo as (2.20a), (2.12) e $\mu_0 = 1$, temos

$$\frac{\partial \mathscr{F}}{\partial (\partial_{\mu} A_{\nu})} = -\frac{1}{4} \left(\frac{\partial (F^{\alpha\beta}) F_{\alpha\beta}}{\partial (\partial_{\mu} A_{\nu})} + \frac{(F^{\alpha\beta}) \partial (F_{\alpha\beta})}{\partial (\partial_{\mu} A_{\nu})} \right),$$

$$\frac{\partial \mathscr{F}}{\partial (\partial_{\mu} A_{\nu})} = -\frac{1}{2} \frac{\partial (F^{\alpha\beta}) F_{\alpha\beta}}{\partial (\partial_{\mu} A_{\nu})},$$

$$\frac{\partial \mathscr{F}}{\partial (\partial_{\mu} A_{\nu})} = -\frac{1}{2} \frac{\partial (\partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha})}{\partial (\partial_{\mu} A_{\nu})} F^{\alpha\beta},$$

$$\frac{\partial \mathscr{F}}{\partial (\partial_{\mu} A_{\nu})} = -\frac{1}{2} (\delta^{\mu}_{\alpha} \delta^{\nu}_{\beta} - \delta^{\mu}_{\beta} \delta^{\nu}_{\alpha}) F^{\alpha\beta}.$$

$$\frac{\partial \mathscr{F}}{\partial (\partial_{\mu} A_{\nu})} = -F^{\mu\nu}.$$
(2.41)

Com isso, pode-se desenvolver a derivada $\frac{\partial \mathscr{G}}{\partial (\partial_{\mu} A_{\nu})}$, substituindo a (2.20a), (2.12),

$$\frac{\partial \mathscr{G}}{\partial(\partial_{\mu}A_{\nu})} = -\frac{1}{4} \left(\frac{\partial(F^{\alpha\beta})\widetilde{F}_{\alpha\beta}}{\partial(\partial_{\mu}A_{\nu})} + \frac{(F^{\alpha\beta})\partial(\widetilde{F}_{\alpha\beta})}{\partial(\partial_{\mu}A_{\nu})} \right),$$

$$\frac{\partial \mathscr{G}}{\partial(\partial_{\mu}A_{\nu})} = -\frac{1}{2} \frac{\partial(F^{\alpha\beta})\widetilde{F}_{\alpha\beta}}{\partial(\partial_{\mu}A_{\nu})},$$

$$\frac{\partial \mathscr{G}}{\partial(\partial_{\mu}A_{\nu})} = -\frac{1}{2} \frac{\partial(\partial_{\alpha}A_{\beta} - \partial_{\beta}A_{\alpha})}{\partial(\partial_{\mu}A_{\nu})}\widetilde{F}^{\alpha\beta},$$

$$\frac{\partial \mathscr{G}}{\partial(\partial_{\mu}A_{\nu})} = -\frac{1}{2} (\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta} - \delta^{\mu}_{\beta}\delta^{\nu}_{\alpha})\widetilde{F}^{\alpha\beta},$$

$$\frac{\partial \mathscr{G}}{\partial(\partial_{\mu}A_{\nu})} = -\widetilde{F}^{\mu\nu}.$$
(2.42)

Define-se, $\frac{\partial \mathscr{L}}{\partial \mathscr{F}} = \mathscr{L}_{\mathscr{F}} e \frac{\partial \mathscr{L}}{\partial \mathscr{G}} = \mathscr{L}_{\mathscr{G}}$, reescreve-se a equação (2.39), como

$$\partial_{\mu} [\mathscr{L}_{\mathscr{F}}(-F^{\mu\nu}) + \mathscr{L}_{\mathscr{G}}(-\widetilde{F}^{\mu\nu})] = \frac{\partial \mathscr{L}(\mathscr{F},\mathscr{G}^2) - \partial (A_{\mu}J^{\mu})}{\partial A_{\nu}}.$$
 (2.43)

Observe, ao lado direito da equação, é possível separá-la em duas parcelas, uma com o lagrangeano e outra com $A_{\mu}J^{\mu}$, mantém-se o mesmo denominador. O primeiro termo é nulo, pois o Lagrangiano não depende de ∂A_{ν} , contudo, o termo J^{μ} é constante em relação a derivada. Com isso, sobrará $\frac{\partial A_{\mu}}{\partial A_{\nu}}$, que por definição, é a delta de Kronecker, logo

$$-\partial_{\mu}(\mathscr{L}_{\mathscr{F}}F^{\mu\nu} + \mathscr{L}_{\mathscr{G}}\widetilde{F}^{\mu\nu}) = -\delta^{\nu}_{\mu}J^{\mu}.$$
(2.44)

Assim, tem-se a equação de movimento para qualquer NLED genérica, em termos das fontes e dos invariantes

$$\partial_{\mu}(\mathscr{L}_{\mathscr{F}}F^{\mu\nu} + \mathscr{L}_{\mathscr{G}}\widetilde{F}^{\mu\nu}) = J^{\nu}.$$
(2.45)

A equação de movimento acima, mostra o comportamento para qualquer NLED no vácuo. Fazendo um paralelo com as eletrodinâmica de Maxwell, a (2.45) é equivalente as leis, de Gaus e de Amperé-Maxwell, ambas são caracterizadas pelo quadri vetor de fonte. Além disso, as Leis, da ausência de monopolo e a lei de Faraday-Lenz, não se alteram para o caso não linear.

Mediante a construção da NLED no vácuo clássico, será desenvolvido o comportamento, da mesma, no meio material. Para isso, utiliza-se as equações (2.38) e (2.32a),

$$D^{\mu\nu} = \frac{\partial(\mathscr{L}(\mathscr{F},\mathscr{G}^2) - A_{\mu}j^{\nu})}{\partial F_{\nu\mu}}, \qquad (2.46)$$

Aplica-se a regra da cadeia,

$$D^{\mu\nu} = \frac{\partial \mathscr{L}}{\partial \mathscr{F}} \frac{\partial \mathscr{F}}{F_{\nu\mu}} + \frac{\partial \mathscr{L}}{\partial \mathscr{G}} \frac{\partial \mathscr{G}}{F_{\nu\mu}},$$

$$D^{\mu\nu} = \mathscr{L}_{\mathscr{F}} \frac{\partial \mathscr{F}}{\partial F_{\nu\mu}} + \mathscr{L}_{\mathscr{G}} \frac{\partial \mathscr{G}}{\partial F_{\nu\mu}},$$

$$D^{\mu\nu} = -\frac{1}{4} \left[\mathscr{L}_{\mathscr{F}} \frac{\partial (F^{\alpha\beta}F_{\alpha\beta})}{\partial (F_{\nu\mu})} + \mathscr{L}_{\mathscr{G}} \frac{\partial (F^{\alpha\beta}\widetilde{F}_{\alpha\beta})}{\partial (F_{\nu\mu})} \right],$$

$$D^{\mu\nu} = \frac{1}{2} \left[\mathscr{L}_{\mathscr{F}} (\delta^{\nu}_{\alpha}\delta^{\mu}_{\beta} - \delta^{\mu}_{\alpha}\delta^{\nu}_{\beta})F_{\alpha\beta} + \mathscr{L}_{\mathscr{G}} (\delta^{\nu}_{\alpha}\delta^{\mu}_{\beta} - \delta^{\mu}_{\alpha}\delta^{\nu}_{\beta})\widetilde{F}_{\alpha\beta} \right]. \quad (2.47)$$

Dessa forma, a equação de movimento para meios materiais é escrita em termos dos campos produzidos, exclusivamente, por cargas livres,

$$D^{\mu\nu} = \mathscr{L}_{\mathscr{F}} F^{\mu\nu} + \mathscr{L}_{\mathscr{G}} \widetilde{F}^{\mu\nu} .$$
(2.48)

Além disso, é possível escrever a (2.48) como

$$\partial_{\mu}D^{\mu\nu} = J^{\nu} . \tag{2.49}$$

Na próxima seção, será abordado classes específicas de eletrodinâmicas não-lineares e para qual contexto, cada uma delas são aplicadas.

2.3 Exemplos de EDs não lineares

Nesta seção, será mostrado algumas eletrodinâmicas particulares, que estão presente na literatura, como, Born-infeld, exponencial e logarítmica.

A eletrodinâmica de Born-Infeld

A eletrodinâmica de Born-Infeld, foi proposta por Max Born em 1934, com intuito de mensurar a energia do elétron na origem, de forma que a auto energia seja finita na origem. Porém, as aplicações não se limitaram apenas a compreensão da auto-energia do elétron, ainda no século XX, estudou-se o acoplamento da NLED de Born-Infeld com a gravitação de Einstein, a fim de sanar os infinitos no centro da métrica de Schwarzchild. A eletrodinâmica de Born-Infeld introduz o parâmetro $\beta \sim 10^{20} V/m$, onde β é chamado de campo crítico da teoria, e está associado ao campo gerado pelo elétron na origem, a uma distância do raio clássico, $r_e \equiv e^2/4\pi\epsilon_0 m_e c^2$. A lagrangiana proposta por Born-Infeld é

$$\mathscr{L}_{BI} = \varepsilon_0 \beta^2 \left(1 - \sqrt{1 - \frac{2\mathscr{F}}{\varepsilon_0 \beta^2} - \frac{\mathscr{G}^2}{\varepsilon_0^2 \beta^4}} \right) , \qquad (2.50)$$

onde, β é o parâmetro livre com dimensão de campo no qual Born e Infeld postularam que $\beta \approx 10^{20} V/m$, é o valor máximo que o campo elétrico pode assumir na teoria. A partir deste momento, será utilizado as unidades naturais em que $\hbar = c = 1$, e por consequência $\epsilon_0 = \mu_0 = 1$. Neste sistema de unidades, vamos tomar como referência a escala MeV de energia. As unidades de campo elétrico e campo magnético na escala MeV é

$$1 \operatorname{Volt}/m = 2.27 \times 10^{-18} \operatorname{MeV}^2$$
, (2.51a)

$$1 \text{ Tesla}(T) = 6.8 \times 10^{-10} \text{ MeV}^2$$
. (2.51b)

Assim, em unidades naturais, o campo crítico de Born-Infeld é $\beta = 2.27 \times 10^2 \text{ MeV}^2$. O campo crítico pode ser escrito em termos do raio como $\beta = \frac{e}{4\pi r_e^2}$, onde e = 0.30 é a carga fundamental do elétron, $m_e = 0.5$ MeV é a massa do elétron, e $r_e = \frac{e^2}{4\pi m_e} \approx 10^{-15}$ m é o raio clássico do elétron.

A NLED de Born-Infeld satisfaz o princípio da correspondência, que para campos fracos, retorna-se à eletrodinâmica de Maxwell. Então, expande-se o lagrangeano em série de potência, com $\beta \gg (\mathscr{F}, \mathscr{G})$

$$\mathscr{L}_{BI} \approx \mathscr{F} + \frac{\mathscr{F}^2}{2\beta^2} + \frac{\mathscr{G}^2}{2\beta^2} + \frac{\mathscr{F}\mathscr{G}^2}{2\beta^4} + \frac{\mathscr{F}}{2\beta^4}^3 \,. \tag{2.52}$$

Observe que, no limite $\beta \to \infty$, todos os termos são nulos, exceto o primeiro (\mathscr{F}) que corresponde ao lagrangiano de Maxwell. Como mencionado anteriormente, uma característica da teoria de BI é a relação dos coeficients, $c_{20} = c_{02} = (2\beta^2)^{-1}$. Usando a definição do tensor deslocamento elétrico (2.48), é possível obter a dependência do vetor deslocamento elétrico em termos dos campos, elétrico e magnéticos. As derivadas de $\mathscr{L}_{\mathscr{F}}$ e $\mathscr{L}_{\mathscr{G}}$,

$$\mathscr{L}_{\mathscr{F}} = \frac{1}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}}, \qquad (2.53a)$$

$$\mathscr{L}_{\mathscr{G}} = \frac{\mathscr{G}}{\beta^2 \sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}}.$$
 (2.53b)

Substituindo em (2.48), obtém-se

$$D^{\mu\nu} = \frac{F^{\mu\nu}}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} + \frac{\widetilde{F}^{\mu\nu}\mathscr{G}}{\beta^2\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}}.$$
 (2.54)

As componentes de $D^{\mu\nu}$ são dadas por

$$\mathbf{D} = \frac{\beta^2 \mathbf{E} + (\mathbf{E} \cdot \mathbf{B}) \mathbf{B}}{\sqrt{\beta^4 - \beta^2 (\mathbf{E}^2 - \mathbf{B}^2) + (\mathbf{E} \cdot \mathbf{B})^2}}, \qquad (2.55a)$$

$$\mathbf{H} = \frac{\beta^2 \mathbf{B} - (\mathbf{E} \cdot \mathbf{B}) \mathbf{E}}{\sqrt{\beta^4 - \beta^2 (\mathbf{E}^2 - \mathbf{B}^2) - (\mathbf{E} \cdot \mathbf{B})^2}}.$$
 (2.55b)

Para o caso de uma carga pontual e em repouso, o campo magnético é nulo, o vetor deslocamento elétrico é

$$\mathbf{D} = \frac{\beta^2 \mathbf{E}}{\sqrt{\beta^4 - \beta^2 E^2}} \,. \tag{2.56}$$

Nesse caso particular, $\nabla \times \mathbf{D} = 0$, e o campo \mathbf{D} é conservativo. Logo, pode ser escrito como o gradiente de um potencial escalar. A Lei Gauss para a carga pontual em repouso é $\nabla \cdot \mathbf{D} = Q \delta(\mathbf{r})$, e a solução da Lei de Gauss é

$$\mathbf{D} = \frac{Q}{4\pi r^2} \hat{r} \,. \tag{2.57}$$

Iguala-se as duas equações (2.56) e (2.57), temos

$$\frac{Q}{4\pi r^2}\,\hat{r} = \frac{\beta^2 \mathbf{E}}{\sqrt{\beta^4 - \beta^2 \mathbf{E}^2}}\,.$$
(2.58)

Dessa forma, foi obtido o campo elétrico de Born-Infeld,

$$\mathbf{E}_{BI}(r) = \frac{Q}{4\pi} \frac{\hat{r}}{\sqrt{r^4 + \left(\frac{Q}{4\pi\epsilon_0\beta}\right)^2}} \,. \tag{2.59}$$

Na teoria de Born-Infeld é definido o parâmetro $r_0^2 = \frac{Q}{4\pi\beta}$, com o r_0 sendo um comprimento associado à escala de distância onde a teoria é válida. Observe que, no caso de $r \to 0$, então o campo elétrico de Born-Infeld, tende a β , com isso, o campo é bem-comportado na origem, diferente do campo elétrico Coulombiano. Contudo, se $r_0^2 \gg Q/(4\pi\beta)$, recupera-se o resultado de Maxwell, sendo o limite de Maxwell na teoria de Born-Infeld.

De posse do campo elétrico de Born-Infeld, pode-se obter o potencial elétrico associado a esse campo. Com a definição de r_0 , temos

$$V_{BI}(r) = \int_{r}^{\infty} \mathbf{E}_{BI}(r) \cdot d\mathbf{r}' ,$$

$$V_{BI}(r) = \frac{Q}{4\pi} \int_{r}^{\infty} \frac{dr'}{\sqrt{r'^{4} + r_{0}^{4}}} ,$$
(2.60)

coloca-se o r_0^2 em evidência, temos

$$V_{BI}(r) = \frac{Q}{4\pi r_0^2} \int_r^\infty \frac{dr'}{\sqrt{1 + \frac{r'^4}{r_0^2}}} \,. \tag{2.61}$$

Usando a substituição simples $\frac{r'}{r_0} = x'$, a integral do potencial é

$$V_{BI}(x) = \frac{Q}{4\pi r_0} \int_x^\infty \frac{dx'}{\sqrt{1 + x'^4}} , \qquad (2.62)$$

onde $x := r/r_0$. Com isso, o potencial eletrostático de Born-Infeld é

$$V_{BI}(r) = \frac{Q}{4\pi r_0} \,_2F_1\left[\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, \frac{r_0^4}{r^4}\right] \,, \tag{2.63}$$

onde $_2F_1$ é uma função hipergeométrica. O campo e o potencial eletrostáticos de Born-Infeld estão ilustrados na figura (1). Nestas figuras, o campo elétrico dividido por $E_0 := Q/(4\pi r_0^2)$ é função da variável adimensional $x = r/r_0$. Similarmente, o potencial elétrico por $V_0 = Q/(4\pi r_0)$ é ilustrado como função de *x* (figura da direita). Note que, nas figuras, ambas as funções são finitas no eixo vertical, quando $r \to 0$. A energia eletrostática em Born-Infeld, definida por $U_{BI}(r) = QV_{BI}(r)$, utilizando o potencial (2.63),

$$U_{BI}(r) = \frac{Q^2}{4\pi r_0} \,_2F_1\left[\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, \frac{r_0^4}{r^4}\right].$$
(2.64)

Assim, foi possível obter a eletrostática de Born-Infeld. No limite $r \rightarrow 0$, a expressão da energia potencial também é finita na origem :

$$U_{BI}(r=0) = 0.036 \,\mathrm{MeV} \,. \tag{2.65}$$

Figura 1 – Painel da esquerda : O campo elétrico de BI dividido por E_0 como função da variável adimensional $x = r/r_0$. Painel da direita : O potencial elétrico de BI dividido por V_0 como função da variável adimensional $x = r/r_0$.

2.3.1 Exemplos de outros eletrodinâmicas não-lineares na literatura

Além da ED de BI, outras EDNLs são bem discutidas na literatura. Algumas delas estão listadas abaixo :

1. Eletrodinâmica de Euler-Heisenberg: As correções radiativas ao vácuo da eletrodinâmica quântica submetido a um campo magnético gera o lagrangeano

$$\mathscr{L}_{EH} = \mathscr{F} + \frac{2\alpha^2}{45m_e^4} \left(4\mathscr{F}^2 + 7\mathscr{G}^2\right) \,, \tag{2.66}$$

onde $\alpha = \frac{1}{137}$ é a constante de estrutura fina, $m_e = 0.5 \,\text{MeV}$ é a massa do elétron, e $\beta_s = \frac{m_e^2}{\alpha} \simeq 5 \times 10^{10} \,\text{T}$ é conhecido como campo crítico de Schwinger. A nãolinearidade se manifesta aqui por meio de \mathscr{F} e \mathscr{G} quadráticos.

 Eletrodinâmica exponencial: A EDNL conhecida como exponencial (e também a logarítmica que veremos a seguir), tem aplicação no estudo de buracos negros pontuais carregados e no comportamento assimptótico de buracos negros tipo Reissner-Nordstrom. O lagrangeano desta EDNL é

$$\mathscr{L}_{exp} = \beta^2 \left[e^{\left(\frac{\mathscr{F}}{\beta^2} + \frac{\mathscr{G}^2}{2\beta^4}\right)} - 1 \right], \qquad (2.67)$$

onde β é o campo crítico desta teoria.

3. Eletrodinâmica Logarítmica: A ED logarítmica é representada pelo lagrangeano :

$$\mathscr{L}_{ln} = -\beta^2 \ln \left[1 - \frac{\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{2\beta^4} \right] \,. \tag{2.68}$$

4. A eletrodinâmica de Maxwell modificada (ModMax) : A EDNL que contém todas as simetrias, inclusive também é invariante conforme, é conhecida como a eletrodinâmica modificada de Maxwell. Esta é representada pelo lagrangeano

$$\mathscr{L}_{MM} = \cosh \gamma \mathscr{F} + \sinh \gamma \sqrt{\mathscr{F}^2 + \mathscr{G}^2} , \qquad (2.69)$$

onde $\gamma \ge 0$ é um parâmetro real e positivo para garantir a unitariedade e a causalidade da teoria. Esta é a única EDNL que preserva a simetria de dualidade e conforme no mesmo lagrangeano.

Observe que, em todos os casos, as lagrangeanas dependem dos invariantes de Lorentz e as de calibre. No limite em que os campos críticos vão para infinito, todas as EDNLs reduzem-se à ED de Maxwell. Neste trabalho, estudaremos apenas a eletrodinâmica de Born-Infeld.

3 As leis de conservação na ED de Born Infeld

3.1 O tensor energia-momento

Na física, as simetrias de uma dada teoria implicam em grandezas conservadas de acordo com o teorema de Noether. Começamos esta seção com a conservação da carga elétrica expressa pela equação da continuidade

$$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0.$$
 (3.1)

Integrando em todo o volume de uma região R, a eq. da continuidade é

$$\int_{R} d^{3}\mathbf{r} \,\nabla \cdot \mathbf{J} + \frac{d}{dt} \int_{R} d^{3}\mathbf{r} \,\rho = 0 \,.$$
(3.2)

Usando o teorema de Gauss, a integral volumar da divergência de **J** é igual ao fluxo desta densidade de corrente na borda da região *R*. O segundo termo de (3.2) é a derivada em relãção ao tempo da carga total em *R*, logo

$$\oint_{\partial R} \mathbf{J} \cdot \hat{n} \, dA + \frac{dQ_T}{dt} = 0 \,. \tag{3.3}$$

Se R se estende por toda região do espaço, a integral de superfície é nula pelas fontes serem localizadas, consequentemente, a carga total se conserva.

A equação da continuidade sai imediatamente de (2.49) operando esta equação por ∂_v

$$\partial_{\nu}\partial_{\mu}D^{\mu\nu} = \partial_{\nu}J^{\nu} , \qquad (3.4)$$

onde a contração do tensor simétrico $\partial_{\nu}\partial_{\mu}$ com o tensor antissimétrico $D^{\mu\nu}$ anula o lado esquerdo de (3.4). Assim, a corrente é conservada em Born-Infeld pela equação na forma covariante

$$\partial_{\nu}J^{\nu} = 0. \qquad (3.5)$$

Ao desenvolver os índices da equação (3.5),

$$\partial_{\nu}J^{\nu} = \partial_{0}J^{0} + \partial_{1}J^{1} + \partial_{2}J^{2} + \partial_{3}J^{3}$$

$$= \frac{\partial J^{0}}{\partial x^{0}} + \frac{\partial J^{1}}{\partial x^{1}} + \frac{\partial J^{2}}{\partial x^{2}} + \frac{\partial J^{3}}{\partial x^{3}}$$

$$= \frac{\partial J_{0}}{\partial x_{0}} + \frac{\partial J_{1}}{\partial x^{1}} + \frac{\partial J_{2}}{\partial x^{2}} + \frac{\partial J_{3}}{\partial x^{3}}$$

$$= \frac{\partial J^{0}}{\partial x^{0}} + \frac{\partial J^{1}}{\partial x^{1}} + \frac{\partial J^{2}}{\partial x^{2}} + \frac{\partial J^{3}}{\partial x^{3}}$$

$$= \frac{\partial \rho}{\partial t} + \frac{\partial J_{x}}{\partial x} + \frac{\partial J_{y}}{\partial y} + \frac{\partial J_{z}}{\partial z}, \qquad (3.6)$$

e tem-se a equação da continuidade para a carga elétrica

$$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0. \qquad (3.7)$$

Para compreender a conservação, de energia e do momento linear do campo eletromagnético será utilizada a identidade de Biachi (2.18) multiplicando-a por $D^{\mu\nu}$ como

$$D^{\mu\nu}\partial_{\mu}F_{\nu\rho} + D^{\mu\nu}\partial_{\nu}F_{\rho\mu} + D^{\mu\nu}\partial_{\rho}F_{\mu\nu} = 0.$$
(3.8)

Aplicando a regra do produto das derivadas, para cada termo,

- 1^a termo:

$$\partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) = (\partial_{\mu}D^{\mu\nu})F_{\nu\rho} + D^{\mu\nu}(\partial_{\mu}F_{\nu\rho}),$$

$$D^{\mu\nu}(\partial_{\mu}F_{\nu\rho}) = \partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - (\partial_{\mu}D^{\mu\nu})F_{\nu\rho}.$$
 (3.9)

- 2^a termo:

$$\partial_{\nu}(D^{\mu\nu}F_{\rho\mu}) = (\partial_{\nu}D^{\mu\nu})F_{\rho\mu} + D^{\mu\nu}(\partial_{\nu}F_{\rho\mu}),$$

$$D^{\mu\nu}(\partial_{\nu}F_{\rho\mu}) = \partial_{\nu}(D^{\mu\nu}F_{\rho\mu}) - (\partial_{\nu}D^{\mu\nu})F_{\rho\mu}.$$
 (3.10)

Substituindo cada termo na equação(3.8), obtém-se

$$\partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - (\partial_{\mu}D^{\mu\nu})F_{\nu\rho} + \partial_{\nu}(D^{\mu\nu}F_{\rho\mu}) - (\partial_{\nu}D^{\mu\nu})F_{\rho\mu} + D^{\mu\nu}\partial_{\rho}F_{\mu\nu} = 0.$$
(3.11)

Repare que nos quatros primeiros termos, os índices μ e v se contraem, então, podem ser considerado um índice mudo, por consequência, podemos permutálos. Então, na terceira e quarta parcela, será feito esse ajuste, que se soma aos dois primeiros termos

$$2\partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - 2(\partial_{\mu}D^{\mu\nu})F_{\nu\rho} + D^{\mu\nu}\partial_{\rho}F_{\mu\nu} = 0.$$
(3.12)

Aplicando as equações (2.48) e (2.49), na (3.12), desenvolvemos a equação como

$$\begin{split} 2\partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - 2J^{\nu}F_{\nu\rho} + \frac{\partial\mathscr{L}}{\partial\mathscr{F}}F^{\mu\nu}\partial_{\rho}F_{\mu\nu} + \frac{\partial\mathscr{L}}{\partial\mathscr{G}}F^{\mu\nu}\partial_{\rho}F_{\mu\nu} &= 0, \\ 2\partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - 2J^{\nu}F_{\nu\rho} + \frac{\partial\mathscr{L}}{\partial\mathscr{F}}\frac{1}{2}\partial_{\rho}(F_{\mu\nu}F^{\mu\nu}) + \frac{\partial\mathscr{L}}{\partial\mathscr{G}}\frac{1}{2}\partial_{\rho}(F_{\mu\nu}\widetilde{F}^{\mu\nu}) &= 0, \\ \partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - J^{\nu}F_{\nu\rho} + \frac{\partial\mathscr{L}}{\partial\mathscr{F}}\frac{1}{4}\partial_{\rho}(F_{\mu\nu}F^{\mu\nu}) + \frac{\partial\mathscr{L}}{\partial\mathscr{G}}\frac{1}{4}\partial_{\rho}(F_{\mu\nu}\widetilde{F}^{\mu\nu}) &= 0, \\ \partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - J^{\nu}F_{\nu\rho} + \frac{\partial\mathscr{L}}{\partial\mathscr{F}}\partial_{\rho}(-\mathscr{F}) + \frac{\partial\mathscr{L}}{\partial\mathscr{G}}\partial_{\rho}(-\mathscr{G}) &= 0, \\ \partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - \left(\frac{\partial\mathscr{L}}{\partial\mathscr{F}}\frac{\partial\mathscr{F}}{\partial\rho} + \frac{\partial\mathscr{L}}{\partial\mathscr{G}}\frac{\partial\mathscr{G}}{\partial x^{\rho}}\right) &= J^{\nu}F_{\nu\rho}, \\ \partial_{\mu}(D^{\mu\nu}F_{\nu\rho}) - \partial_{\rho}\mathscr{L} &= J^{\nu}F_{\nu\rho}, \end{split}$$

$$\partial_{\mu}[(D^{\mu\nu}F_{\nu\rho}) - \delta^{\mu}_{\rho}\mathscr{L}] = J^{\nu}F_{\nu\rho}.$$
 (3.13)

A última equação leva à Lei de conservação

$$\partial_{\mu}\Theta^{\mu}_{\rho} = J^{\nu}F_{\nu\rho} , \qquad (3.14)$$

onde Θ^{μ}_{ρ} é chamado de tensor energia-momento (EM)

$$\Theta^{\mu}_{\rho} = D^{\mu\nu} F_{\nu\rho} - \delta^{\mu}_{\rho} \mathscr{L} . \qquad (3.15)$$

Substituindo a equação (2.20a), o tensor EM explicitamente em termos dos invariantes de Lorentz é dado por

$$\begin{split} \Theta^{\mu}_{\rho} &= D^{\mu\nu}F_{\nu\rho} - \delta^{\mu}_{\rho}\mathscr{L}, \\ \Theta^{\mu}_{\rho} &= \frac{\partial\mathscr{L}}{\partial\mathscr{F}}F^{\mu\nu}F_{\nu\rho} + \frac{\partial\mathscr{L}}{\partial\mathscr{G}}F^{\nu\rho}\widetilde{F}_{\nu\rho} - \delta^{\mu}_{\rho}\mathscr{L}, \\ \Theta^{\mu}_{\rho} &= \frac{\partial\mathscr{L}}{\partial\mathscr{F}}F^{\mu\nu}F_{\nu\rho} + \frac{\partial\mathscr{L}}{\partial\mathscr{G}}\delta^{\mu}_{\rho} - \delta^{\mu}_{\rho}\mathscr{L}, \\ \Theta^{\mu}_{\rho} &= \frac{\partial\mathscr{L}}{\partial\mathscr{F}}F^{\mu\nu}F_{\nu\rho} + \delta^{\mu}_{\rho}\left(\frac{\partial\mathscr{L}}{\partial\mathscr{G}}\mathscr{G} - \mathscr{L}\right). \end{split}$$
(3.16)

Assim, o tensor energia-momento de Born-Infeld é

$$\Theta^{\mu}_{\rho} = \frac{\partial \mathscr{L}}{\partial \mathscr{F}} F^{\mu\nu} F_{\nu\rho} + \delta^{\mu}_{\rho} \left(\frac{\partial \mathscr{L}}{\partial \mathscr{G}} \mathscr{G} - \mathscr{L} \right) .$$
(3.17)

Na ausência de fontes, ou seja, com $J^{\mu} = 0$, a eq. (3.14) reduz-se à $\partial_{\mu}\Theta^{\mu\rho} = 0$. Para $\rho = 0$, obtém-se o teorema de Poynting sem fontes

$$\nabla \cdot \mathbf{S} + \frac{\partial u_{BI}}{\partial t} = 0 , \qquad (3.18)$$

onde **S** é o vetor de Poynting, cuja componente é $S^i = \Theta_{i0}$, e a densidade de energia do campo de Born-Infeld $u_{BI} = \Theta^{00}$. Vamos obter estas duas componentes do tensor energia-momento em termos dos invariantes $\mathscr{F} \in \mathscr{G}$. A densidade de energia é

$$\begin{split} \Theta^{00} &= \frac{\partial \mathscr{L}}{\partial \mathscr{F}} F^{00} F_{v0} + \frac{\partial \mathscr{L}}{\partial \mathscr{F}} (\mathbf{E} \cdot \mathbf{B})^2 - \mathscr{L}, \\ \Theta^{00} &= \frac{\partial \mathscr{L}}{\partial \mathscr{F}} E^2 + \frac{\partial \mathscr{L}}{\partial \mathscr{F}} (\mathbf{E} \cdot \mathbf{B})^2 - \mathscr{L}, \\ \Theta^{00} &= \frac{\mathbf{E}^2 + \frac{1}{\beta^2} (\mathbf{E} \cdot \mathbf{B})^2}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} - \beta^2 \left(1 - \sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}\right), \\ \Theta^{00} &= \frac{\mathbf{E}^2 + \frac{1}{\beta^2} (\mathbf{E} \cdot \mathbf{B})^2}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} + \beta^2 \sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}} - \beta^2, \\ \Theta^{00} &= \frac{\mathbf{E}^2 + \frac{1}{\beta^2} (\mathbf{E} \cdot \mathbf{B})^2 + \beta^2 \left(1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}\right)}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} - \beta^2, \\ \Theta^{00} &= \frac{\mathbf{E}^2 + \frac{1}{\beta^2} (\mathbf{E} \cdot \mathbf{B})^2 + \beta^2 \left(1 - \frac{\mathbf{E}^2 - \mathbf{B}^2}{\beta^2} - \frac{(\mathbf{E} \cdot \mathbf{B})^2}{\beta^4}\right)}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} - \beta^2, \\ \Theta^{00} &= \frac{\beta^2 + \mathbf{B}^2}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} - \beta^2, \\ \Theta^{00} &= \frac{\beta^2 + \mathbf{B}^2}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} - \beta^2, \\ (3.19) \\ \Theta^{00} &= \frac{\beta^2 \left(1 - \sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}\right)}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} . \end{split}$$

Assim, a densidade de energia de Born-Infeld é dada por,

$$u_{BI} = \frac{\mathscr{L}_{BI} + \mathbf{B}^2}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} \,. \tag{3.20}$$

No limite $\beta \rightarrow \infty$, recupera-se a densidade de energia do campo de Maxwell

$$u_{EM} = \frac{1}{2} (\mathbf{E}^2 + \mathbf{B}^2) .$$
 (3.21)

Para o caso de uma carga pontual Q em repouso, $\mathbf{B} = \mathbf{0}$ e $\mathscr{G} = 0$. O campo elétrico é dado por (2.59) e $\mathscr{F} = \frac{1}{2} \mathbf{E}_{BI}^2$, logo, a auto-energia da carga pontual é

$$u_{BI} = \beta^2 \frac{1 - \sqrt{1 - \frac{E_0^2 / \beta^2}{1 + (r/r_0)^4}}}{\sqrt{1 - \frac{E_0^2 / \beta^2}{1 + (r/r_0)^4}}}.$$
(3.22)

A componente Θ^{i0} dá o vetor de Poynting S

$$\mathbf{S} = \frac{\partial \mathscr{L}}{\partial \mathscr{F}} \mathbf{E} \times \mathbf{B} , \qquad (3.23)$$

e usando o resultado de (2.53a), para Born-Infeld é

$$\mathbf{S} = \frac{\mathbf{E} \times \mathbf{B}}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^2} - \frac{\mathscr{G}^2}{\beta^4}}} \,. \tag{3.24}$$

Voltando a eq. (3.14), a componente $\rho = j$ dá o teorema do momento linear

$$\partial_i T^{ij} - \frac{\partial P^j}{\partial t} = f_L^j \,, \tag{3.25}$$

onde $f_L^j = \rho E^j + (\mathbf{J} \times \mathbf{B})^j$ é a componente *j* da densidade de força de Lorentz, $P^j = S^j$ é a componente do momento linear igual à componente do vetor de Poynting em (3.23), e

 $T^{ij} = -\Theta^{ij}$ é o tensor de pressão de Born-Infeld, cuja componente espacial é

$$\begin{split} \Theta^{ij} &= \frac{\partial \mathscr{L}}{\partial \mathscr{F}} F^{i\rho} F^{j}_{\rho} - \delta^{ij} \left(\frac{\partial \mathscr{L}}{\partial \mathscr{G}} \mathscr{G} - \mathscr{L} \right), \\ \Theta^{ij} &= \frac{\partial \mathscr{L}}{\partial \mathscr{F}} [F^{i0} F^{j}_{0} + F^{ik} F^{j}_{k}] - \delta^{ij} \left(\frac{\partial \mathscr{L}}{\partial \mathscr{G}} \mathscr{G} - \mathscr{L} \right), \\ \Theta^{ij} &= \frac{\partial \mathscr{L}}{\partial \mathscr{F}} [F^{i0} (-F_{0j}) + F^{ik} F_{jk}] - \delta^{ij} \left(\frac{\partial \mathscr{L}}{\partial \mathscr{G}} \mathscr{G} - \mathscr{L} \right), \\ \Theta^{ij} &= \frac{\partial \mathscr{L}}{\partial \mathscr{F}} [E^{i} (-E^{j}) + \varepsilon^{ikl} B^{l} \varepsilon^{jkm} B^{m}] - \delta^{ij} \left(\frac{\partial \mathscr{L}}{\partial \mathscr{G}} \mathscr{G} - \mathscr{L} \right), \\ \Theta^{ij} &= \frac{\partial \mathscr{L}}{\partial \mathscr{F}} [-E^{i} E^{j} + B^{m} B^{l} (\delta^{ij} \delta^{lm} + \delta^{il} \delta^{jm}) - \delta^{ij} \left(\frac{\partial \mathscr{L}}{\partial \mathscr{G}} \mathscr{G} - \mathscr{L} \right), \\ \Theta^{ij} &= \frac{\partial \mathscr{L}}{\partial \mathscr{F}} [-E^{i} E^{j} + (\delta^{ij} B^{2} - B^{i} B^{j}) - \delta^{ij} \left(\frac{\partial \mathscr{L}}{\partial \mathscr{G}} \mathscr{G} - \mathscr{L} \right), \\ \Theta^{ij} &= \frac{-E^{i} E^{j} + \delta^{ij} B^{2} - B^{i} B^{j}}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^{2}} - \frac{\mathscr{G}^{2}}{\beta^{4}}}} - \frac{\delta^{ij} \frac{1}{\beta^{2}} \mathscr{G}^{2}}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^{2}} - \frac{\mathscr{G}^{2}}{\beta^{4}}}} . \end{split}$$
(3.26)

Substituindo o lagrangeano de Born-Infeld e o invariante G, obtém-se

$$\Theta^{ij} = \frac{-E^{i}E^{j} - B^{i}B^{j} + \delta^{ij}\mathbf{E}^{2} - \delta^{ij}\mathcal{L}_{BI}}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^{2}} - \frac{\mathscr{G}^{2}}{\beta^{4}}}}.$$
(3.27)

Por definição, $\Theta^{ij} = -T^{ij}$, então o tensor pressão de Born-Infeld é

$$T^{ij} = \frac{E^{i}E^{j} + B^{i}B^{j} + \delta^{ij}(\mathscr{L}_{BI} - \mathbf{E}^{2})}{\sqrt{1 - \frac{2\mathscr{F}}{\beta^{2}} - \frac{\mathscr{G}^{2}}{\beta^{4}}}}.$$
(3.28)

No limite de $\beta \to \infty$, já vimos que $\mathscr{L}_{BI} \to \mathscr{F}$, e todas as componentes do tensor energiamomento calculadas anteriormente são reduzidas para os resultados da ED de Maxwell.

Na próxima seção, será abordado a linearização da NLED de Born-Infeld e estudaremos a propagação de ondas num material condutor de acordo com a Lei de Ohm e também com a Lei de condutividade magnética.

4 Propagação das ondas num material condutor na ED de BI

4.1 Linearização da ED de Born-Infeld na presença de um campo magnético externo

Estudar as soluções de propagação de ondas numa eletrodinâmica não-linear é uma tarefa difícil visto que há correções de ordem infinita nos campos elétrico e magnético. Contudo, podemos obter resultados interessantes se aproximarmos as EDNLs expandindo-as em torno de um campo eletromagnético externo. No nosso caso, vamos expandir a ED de BI em torno de um campo magnético externo, constante e uniforme para obter resultados da propagação de ondas até a aproximação de segunda ordem nos campos propagantes. Esta prescrição do campo magnético de fundo é introduzida pela transformação

$$F_0^{\mu\nu}(x) = f^{\mu\nu}(x) + F_B^{\mu\nu}, \qquad (4.1)$$

onde $F_0^{\mu\nu}$ é o tensor de campo eletromagnético que usamos até o capítulo 3, e então os invariantes são agora reescritos como \mathscr{F}_0 e \mathscr{G}_0 como funções dos campos \mathscr{E}_0 e \mathscr{B}_0 , $f^{\mu\nu}$ é o tensor associados aos campos propagantes **e** e **b**, $F_B^{\mu\nu}$ é o tensor de campo associado ao campo magnético **B** externo, constante e uniforme. Explicitamente, esses novos tensores são

$$f^{\mu\nu} = \partial^{\mu}a^{\nu} - \partial^{\nu}a^{\mu} = \left(-e^{i}, -\varepsilon^{ijk}b^{k}\right), \qquad (4.2a)$$

$$F_B^{\mu\nu} = \partial^{\mu}A_B^{\nu} - \partial^{\nu}A_B^{\mu} = \left(0, -\varepsilon^{ijk}B^k\right).$$
(4.2b)

Note que, o potencial a^{μ} é propagante e está associado ao tensor $f^{\mu\nu}$. Expandindo o lagrangeano de BI (2.50) até a segunda ordem em $f^{\mu\nu}$, temos

$$\mathscr{L}^{(2)} = -\frac{1}{4}c_1 f_{\mu\nu}^2 - \frac{1}{4}c_2 f_{\mu\nu} \widetilde{f}^{\mu\nu} - \frac{1}{2}f_{\mu\nu}G_B^{\ \mu\nu} + \frac{1}{8}Q_B^{\ \mu\nu\kappa\lambda}f_{\mu\nu}f_{\kappa\lambda} - J_{\mu}a^{\mu} - J_{\mu}A_B^{\ \mu}, \qquad (4.3)$$

onde os tensores de fundo são

$$G_{B}^{\ \mu\nu} = c_{1}F_{B}^{\ \mu\nu} + c_{2}\widetilde{F}_{B}^{\ \mu\nu},$$

$$Q_{B}^{\ \mu\nu\kappa\lambda} = d_{1}F_{B}^{\ \mu\nu}F_{B}^{\ \kappa\lambda} + d_{2}\widetilde{F}_{B}^{\ \mu\nu}\widetilde{F}_{B}^{\ \kappa\lambda}.$$
(4.4)

e os coeficientes da expansão, no caso de BI, são dados por

$$c_{1} = \frac{\partial \mathscr{L}_{BI}}{\partial \mathscr{F}_{0}} \Big|_{\mathbf{B}} = \frac{\beta}{\sqrt{\beta^{2} + \mathbf{B}^{2}}}, \ c_{2} = \frac{\partial \mathscr{L}_{BI}}{\partial \mathscr{G}_{0}} \Big|_{\mathbf{B}} = 0,$$
$$d_{1} = \frac{\partial^{2} \mathscr{L}_{BI}}{\partial \mathscr{F}_{0}^{2}} \Big|_{\mathbf{B}} = \frac{\beta}{(\beta^{2} + \mathbf{B}^{2})^{3/2}},$$
$$d_{2} = \frac{\partial^{2} \mathscr{L}_{BI}}{\partial \mathscr{G}_{0}^{2}} \Big|_{\mathbf{B}} = \frac{1}{\beta \sqrt{\beta^{2} + \mathbf{B}^{2}}}, \ d_{3} = \frac{\partial^{2} \mathscr{L}_{BI}}{\partial \mathscr{F}_{0} \partial \mathscr{G}_{0}} \Big|_{\mathbf{B}} = 0.$$
(4.5)

Usando o lagrangeano (4.3) no princípio da ação, as equações de campo linearizadas são

$$\partial_{\mu} \left[c_1 f^{\mu\nu} + c_2 \tilde{f}^{\mu\nu} - \frac{1}{2} Q_B^{\ \mu\nu\kappa\lambda} f_{\kappa\lambda} \right] = J^{\nu} , \qquad (4.6)$$

$$\partial_{\mu}f_{\nu\rho} + \partial_{\nu}f_{\rho\mu} + \partial_{\rho}f_{\mu\nu} = 0. \qquad (4.7)$$

Na forma vetorial, as equações são escritas como

$$\nabla \cdot \mathbf{e} + f \, \mathbf{B} \cdot \nabla (\mathbf{B} \cdot \mathbf{e}) = \rho \,, \tag{4.8a}$$

$$\nabla \times \mathbf{e} + \frac{\partial \mathbf{b}}{\partial t} = \mathbf{0} \quad , \quad \nabla \cdot \mathbf{b} = 0 \quad ,$$
 (4.8b)

$$\nabla \times \mathbf{b} + d \mathbf{B} \times \nabla (\mathbf{B} \cdot \mathbf{b}_0) = \mathbf{J} + \frac{\partial \mathbf{e}}{\partial t} + f \mathbf{B} \frac{\partial}{\partial t} (\mathbf{B} \cdot \mathbf{e}) , \qquad (4.8c)$$

onde $f = d_2/c_1 = \beta^{-2}$ e $d = d_1/c_1 = (\mathbf{B}^2 + \beta^2)^{-1}$.

Note que, mais uma vez, as equações de Maxwell para os campos e são recuperadas limite de $\beta \rightarrow \infty$, no qual d = f = 0.

As equações na forma linear (4.8) permite-nos trabalhar com as soluções de ondas planas neste meio sob ação do campo magnético externo **B**. Na próxima seção vamos estudar a dispersão e absorção das ondas planas neste meio governado pela Lei de Ohm.

4.2 Propagação de ondas no condutor Ohmico na ED de BI

Como é sabido em eletrodinâmica clássica, para uma classe de materiais, como os metais, a densidade de corrente elétrica é governada pela Lei de Ohm

$$\mathbf{J} = \boldsymbol{\sigma} \mathbf{e} \,, \tag{4.9}$$

onde σ é a condutividade elétrica, características do meio material e **e** o campo elétrico linearizado. Substituindo (4.9) na Lei de Ampère-Maxwell em Born-Infeld, e as soluções de ondas planas

$$\mathbf{e}(\mathbf{r},t) = \mathbf{e}_0 \ e^{i(\mathbf{k}\cdot\mathbf{r}-\boldsymbol{\omega}t)} \quad , \quad \mathbf{b}(\mathbf{r},t) = \mathbf{b}_0 \ e^{i(\mathbf{k}\cdot\mathbf{r}-\boldsymbol{\omega}t)} \ , \tag{4.10}$$

obtemos as equações no espaço das frequências ω

$$\mathbf{k} \cdot \mathbf{e_0} + \beta^2 \ (\mathbf{B} \cdot \mathbf{k}) (\mathbf{B} \cdot \mathbf{e_0}) = 0, \qquad (4.11a)$$

$$\mathbf{k} \times \mathbf{e_0} = \boldsymbol{\omega} \mathbf{b_0} \quad , \quad \mathbf{k} \cdot \mathbf{b_0} = \mathbf{0} \quad , \tag{4.11b}$$

$$\mathbf{k} \times \mathbf{b}_{0} + \frac{(\mathbf{B} \times \mathbf{k})}{\mathbf{B}^{2} + \beta^{2}} (\mathbf{B} \cdot \mathbf{b}_{0}) = -i\sigma \mathbf{e}_{0} - \beta^{2}\omega \mathbf{B} (\mathbf{B} \cdot \mathbf{e}_{0}) - \omega \mathbf{e}_{0} .$$
(4.11c)

Multiplicando por $\mathbf{k} \times$ na equação (4.11b), a Lei de Faraday-Lenz em Born-Infeld é

$$\mathbf{k} \times (\mathbf{k} \times \mathbf{e_0}) = \boldsymbol{\omega} (\mathbf{k} \times \mathbf{b_0}) . \tag{4.12}$$

Do lado esquerdo, aplica-se a propriedade do triplo produto vetorial, $\mathbf{k} \times (\mathbf{k} \times \mathbf{e_0}) = \mathbf{k}(\mathbf{k} \cdot \mathbf{e_0}) - \mathbf{e_0}(\mathbf{k}^2)$, e ao lado direito, será substituído a equação (4.11c), logo

$$\mathbf{k}(\mathbf{k}\cdot\mathbf{e}_0) - \mathbf{e}_0(\mathbf{k}^2) = -\frac{\omega(\mathbf{B}\times\mathbf{k})}{\mathbf{B}^2 + \beta^2} (\mathbf{B}\cdot\mathbf{b}_0) - i\sigma\omega\mathbf{e}_0 - \beta^2\omega^2\mathbf{B}(\mathbf{B}\cdot\mathbf{e}_0) - \omega^2\mathbf{e}_0.$$
(4.13)

Substituindo a Lei de Faraday-Lenz $\mathbf{b}_0 = \frac{\mathbf{k} \times \mathbf{e}_0}{\omega}$, temos

$$\mathbf{k}(\mathbf{k}\cdot\mathbf{e}_{0}) + \mathbf{e}_{0}(\omega^{2} - \mathbf{k}^{2} + i\sigma\omega) + \frac{\mathbf{B}\times\mathbf{k}}{\mathbf{B}^{2} + \beta^{2}}(\mathbf{B}\times\mathbf{k})\cdot\mathbf{e}_{0} + \beta^{2}\omega^{2}\mathbf{B}(\mathbf{B}\cdot\mathbf{e}_{0}) = 0. \quad (4.14)$$

Escrevendo esta eq. na forma de componentes, obtém-se que

$$M_{ij}\mathbf{e}_{0j} = 0 , \qquad (4.15)$$

onde M_{ij} é a matriz

$$M_{ij} = \delta_{ij} \left(1 - \mathbf{n}^2 + i\frac{\sigma}{\omega} \right) + \mathbf{n}_i \, \mathbf{n}_j + \frac{(\mathbf{B} \times \mathbf{n})_i \, (\mathbf{B} \times \mathbf{n})_j}{\mathbf{B}^2 + \beta^2} + \beta^2 \, \mathbf{B}_i \, \mathbf{B}_j \,, \tag{4.16}$$

escrita em termos das componentes $n_i = k_i/\omega$, na qual o índice de refração do meio é definido por $n = \sqrt{n_i n_i}$. As soluções não triviais de (4.16) impõem que det $(M_{ij}) = 0$, que leva às equações

$$1 - n^2 + \frac{(\mathbf{B} \times \mathbf{n})^2}{\mathbf{B}^2 + \beta^2} - i\frac{\sigma}{\omega} = 0, \qquad (4.17a)$$

$$\left(\mathbf{n}^{2}-1-i\frac{\sigma}{\omega}\right)\left(1+\frac{\mathbf{B}^{2}}{\beta^{2}}+i\frac{\sigma}{\omega}\right)-\left(\frac{\mathbf{B}}{\beta}\times\mathbf{n}\right)^{2}=0.$$
 (4.17b)

A solução de (4.17a) é dada por

$$n_1 = \sqrt{\frac{1 + i\frac{\sigma}{\omega}}{1 - (\mathbf{B}^2 + \beta^2)^{-1} (\mathbf{B} \times \hat{\mathbf{k}})^2}}.$$
 (4.18)

O índice de refração n_1 pode ser escrito como a soma da parte real (x) com a imaginária (y), $n_1 = x + iy$, onde x e y satisfaz as relações

$$(x+iy)^{2} = \frac{1+i\frac{\sigma}{\omega}}{1-(\mathbf{B}^{2}+\beta^{2})^{-1}(\mathbf{B}\times\hat{\mathbf{k}})^{2}},$$

$$x^{2}-y^{2}+2xyi = \frac{1+i\frac{\sigma}{\omega}}{1-(\mathbf{B}^{2}+\beta^{2})^{-1}(\mathbf{B}\times\hat{\mathbf{k}})^{2}}.$$
(4.19)

As partes real e imaginária de (4.19) levam ao sistema de equações

$$\alpha (x^2 - y^2) = 1, (4.20a)$$

$$y = \frac{e}{2\alpha x}, \qquad (4.20b)$$

onde $\alpha = 1 - (\mathbf{B}^2 + \beta^2)^{-1} (\mathbf{B} \times \hat{k})^2$, e $e = \frac{\sigma}{\omega}$. Este sistema dá a equação polinomial em x

$$\alpha^2 x^4 - \alpha x^2 - \frac{e^2}{4} = 0 , \qquad (4.21)$$

cuja solução física possível é

$$x = \sqrt{\frac{\sqrt{1 + \frac{\sigma^2}{\omega^2}} + 1}{2 - 2(\mathbf{B}^2 + \beta^2)^{-1} (\mathbf{B} \times \hat{\mathbf{k}})^2}}.$$
 (4.22)

A parte imaginária de n_1 leva a

$$\frac{\alpha}{2} \left(\frac{\sqrt{1 + \frac{\sigma^2}{\omega^2}} + 1}{\alpha} - y^2 \right) = 1 , \qquad (4.23)$$

e lembrando que $\alpha = 1 - (\textbf{B}^2 + \beta^2)^{-1} \, (\textbf{B} \times \boldsymbol{\hat{k}})^2,$ temos

$$y = \sqrt{\frac{\sqrt{1 + \frac{\sigma^2}{\omega^2}} - 1}{2 - 2(\mathbf{B}^2 + \beta^2)^{-1} (\mathbf{B} \times \hat{\mathbf{k}})^2}}.$$
 (4.24)

Voltando à equação (4.17b), sua solução é

$$n_2 = \sqrt{\frac{1 + \mathbf{B}^2 / \beta^2 - e^2 + i e(2 + \mathbf{B}^2 / \beta^2)}{1 + (\mathbf{B} \cdot \hat{\mathbf{k}} / \beta)^2 + i e}} .$$
(4.25)

Tomando o conjugado complexo no denominador, temos

$$n_2 = \sqrt{\frac{1 + \mathbf{B}^2 / \beta^2 - e^2 + ie(2 + \mathbf{B}^2 / \beta^2)}{(1 + (\mathbf{B} \cdot \hat{\mathbf{k}})^2 / \beta^2)^2 + e^2}} \left[1 + \left(\frac{\mathbf{B}}{\beta} \cdot \hat{\mathbf{k}}\right)^2 - ie \right], \quad (4.26)$$

Escrevendo $n_2 = \sqrt{a + ib} = x' + iy'$, obtém-se o sistema de equações

$$x'^2 - y'^2 = a. (4.27a)$$

$$y' = \frac{b}{2x},$$
 (4.27b)

onde a e b são definidos por

$$a = \frac{(1 + \mathbf{B}^2/\beta^2 - e^2)(\mathbf{B} \cdot \hat{\mathbf{k}})^2/\beta^2 + (1 + \mathbf{B}^2/\beta^2)(1 + e^2)}{1 + e^2 + [2 + (\mathbf{B} \cdot \hat{\mathbf{k}})^2/\beta^2](\mathbf{B} \cdot \hat{\mathbf{k}})^2/\beta^2}, \qquad (4.28a)$$

$$b = e \frac{1 + e^2 + (\mathbf{B} \cdot \hat{\mathbf{k}})^2 / \beta^2 (2 + \mathbf{B}^2 / \beta^2)}{1 + e^2 + [2 + (\mathbf{B} \cdot \hat{\mathbf{k}})^2 / \beta^2] (\mathbf{B} \cdot \hat{\mathbf{k}})^2 / \beta^2} .$$
(4.28b)

Com isso, a solução deste sistema leva à equação polinomial

$$x^{\prime 4} - ax^{\prime 2} - \frac{b^2}{4} = 0, \qquad (4.29)$$

cuja solução física é

$$x' = \sqrt{\frac{|a|}{2}} \sqrt{\sqrt{1 + \frac{b^2}{a^2} + \operatorname{sign}(a)}} .$$
 (4.30)

Para a parte imaginária, obtém-se que

$$y' = \sqrt{\frac{|a|}{2}} \sqrt{\sqrt{1 + \frac{b^2}{a^2} - \operatorname{sign}(a)}},$$
 (4.31)

onde sign(a) é a função sinal de a.

Reunindo todos os resultados, obtemos as soluções de n_1 e n_2 , respectivamente,

$$n_{1} = \sqrt{\frac{\sqrt{1 + \frac{\sigma^{2}}{\omega^{2}}} + 1}{2 - 2(\beta^{2} + \mathbf{B}^{2})^{-1}(\mathbf{B} \times \hat{\mathbf{k}})^{2}}} + i\sqrt{\frac{\sqrt{1 + \frac{\sigma^{2}}{\omega^{2}}} - 1}{2 - 2(\beta^{2} + \mathbf{B}^{2})^{-1}(\mathbf{B} \times \hat{\mathbf{k}})^{2}}}, \quad (4.32a)$$

$$n_2 = \sqrt{\frac{|a|}{2}} \sqrt{\sqrt{1 + \frac{b^2}{a^2}}} + \operatorname{sign}(a) + i \sqrt{\frac{|a|}{2}} \sqrt{\sqrt{1 + \frac{b^2}{a^2}}} - \operatorname{sign}(a) .$$
(4.32b)

Note que, nesses resultados, as partes real e imaginária dos índices de refração depende do ângulo em o campo magnético externo **B** faz com a direção de propagação de onda $\hat{\mathbf{k}}$. Na situação em que **B** é paralelo a $\hat{\mathbf{k}}$, a solução de n_1 reduz-se ao caso usual da ED de Maxwell, enquanto que n_2 permanece com a contribuição do campo magnético externo, e também do campo crítico β de BI. Portanto, na figura (2), consideramos as partes real e imaginária de n_1 como funções da frequência ω , para o caso em que **B** é perpendicular a $\hat{\mathbf{k}}$. Essa figura é desenhada com os valores de $\beta = 227 \text{ MeV}^2$, para um campo magnético do tipo estrela de nêutrons que tem um valor estimado de $B = 10^{11} \text{ T} =$

Figura 2 – As partes real (linha contínua) e imaginária (linha vermelha pontilhada) da solução n_1 como funções da frequência ω .

68 MeV², e para um material considerado condutor perfeito de $\sigma = 0.5$ MeV¹. A figura (2) mostra que $\Re[n_1]$ cai mais rapidamente com a frequência do que $\Im[n_1]$, ou seja, a dispersão e a absorção da onda vão a zero no regime de altas frequências. Na figura (3), as partes real e imaginária da solução n_2 são ilustradas como funções da frequência ω para o caso do campo magnético paralelo a direção de propagação de onda. A segunda solução tem um comportamento similar ao da solução de n_1 .

4.3 Propagação de ondas no condutor de corrente magnética na ED de BI

Nesta sessão, estudamos os efeitos da dispersão e da absorção de ondas governadas pela corrente de condutividade magnética. A natureza desta corrente está associada ao balanço de quiralidade entre férmions left e right quando submetidos a um campo magnético externo. Nesse caso, a densidade de corrente é proporcional ao campo magnético e dado por

$$\mathbf{J} = \boldsymbol{\sigma} \mathbf{B}_0 , \qquad (4.33)$$

onde σ é agora a condutividade magnética isotrópica do meio material. Para a nossa prescrição de linearização, $\mathbf{B}_0 = \mathbf{b} + \mathbf{B}$, e as equações de campo para esta densidade de

¹ No sistema natural de unidades, a resistividade elétrica tem a conversão $1\Omega \cdot m = 2.95 \times 10^{23} \,\text{GeV}^{-1}$. Portanto, a condutividade elétrica tem dimensão de energia.

Figura 3 – As partes real (linha contínua) e imaginária (linha vermelha pontilhada) da solução n_2 como funções da frequência ω .

corrente são

$$\mathbf{k} \cdot \mathbf{e}_{\mathbf{0}} + f \left(\mathbf{B} \cdot \mathbf{k} \right) \left(\mathbf{B} \cdot \mathbf{e}_{\mathbf{0}} \right) = 0, \qquad (4.34a)$$

$$\mathbf{k} \times \mathbf{e}_{\mathbf{0}} = \boldsymbol{\omega} \mathbf{b}_{\mathbf{0}} , \qquad (4.34b)$$

$$\mathbf{k} \cdot \mathbf{b_0} = 0 \quad , \tag{4.34c}$$

$$\mathbf{k} \times \mathbf{b_0} + d (\mathbf{B} \times \mathbf{k})(\mathbf{B} \cdot \mathbf{b_0}) = -i\sigma \mathbf{b_0} - i\sigma \mathbf{B} \delta^3(\mathbf{k}) \delta(\mathbf{\omega}) - f \omega \mathbf{B} (\mathbf{B} \cdot \mathbf{e_0}) - \omega \mathbf{e_0} , \quad (4.34d)$$

onde já substituimos as soluções de ondas planas via integral de Fourier de **e** e **b**. Substituindo a equação 4.34b na 4.34d, temos

$$\mathbf{k} \times \frac{\mathbf{k} \times \mathbf{e_0}}{\omega} + d \left(\mathbf{B} \times \mathbf{k} \right) \left(\mathbf{B} \cdot \frac{\mathbf{k} \times \mathbf{e_0}}{\omega} \right) = -i \sigma \omega \frac{\mathbf{k} \times \mathbf{e_0}}{\omega} - i \sigma \mathbf{B} \,\delta^3(\mathbf{k}) \,\delta(\omega) - f \,\omega \mathbf{B} \left(\mathbf{B} \cdot \mathbf{e_0} \right) - \omega \mathbf{e_0}$$
(4.35)

Usando a propriedade da delta de Dirac, $\omega \delta(\omega) = 0$,

$$\mathbf{k} \cdot (\mathbf{k} \cdot \mathbf{e}_0) + \mathbf{e}_0(\omega^2 - \mathbf{k}^2) + d \ (\mathbf{B} \times \mathbf{k}) (\mathbf{B} \times \mathbf{k}) \cdot \mathbf{e}_0 + i \ \sigma \omega (\mathbf{k} \times \mathbf{e}_0) + f \ \omega^2 \ \mathbf{B} \ (\mathbf{B} \cdot \mathbf{e}_0) = 0 ,$$
(4.36)

Substituindo $d = (\mathbf{B}^2 + \beta^2)^{-1}$, $f = \beta^{-2}$, e além disso, definindo o índice de refração como $n_i = k_i/\omega$, com $n = \sqrt{n_i n_i}$, obtemos a equação de onda

$$O_{ij} \mathbf{e_0}_j = 0 , \qquad (4.37)$$

onde os elementos de matriz O_{ij} são dados por

$$O_{ij} = \mathbf{n}_i \mathbf{n}_j + (1 - \mathbf{n}^2) \,\delta_{ij} + \frac{(\mathbf{B} \times \mathbf{n})_i \,(\mathbf{B} \times \mathbf{n})_j}{\mathbf{B}^2 + \beta^2} - i \frac{\sigma}{\omega} \varepsilon_{ijk} n_k + \beta^{-2} \,\mathbf{B}_i \mathbf{B}_j \,. \tag{4.38}$$

Figura 4 – A solução n_1 de (4.39a) como função da frequência ω .

Mais uma vez, a solução não trivial de (4.37) requer que $det(O_{ij}) = 0$. Esta equação tem as soluções físicas

$$n_{1} = \sqrt{\frac{(\beta^{2} + \mathbf{B}^{2})\left(1 + \frac{\sigma^{2}}{2\omega^{2}} - \frac{\sigma}{2\omega}\sqrt{4 + \frac{\sigma^{2}}{\omega^{2}}}\right)}{\mathbf{B}^{2} + \beta^{2} - (\mathbf{B} \times \hat{\mathbf{k}})^{2}}}, \qquad (4.39a)$$

$$n_{2} = \sqrt{\frac{(\beta^{2} + \mathbf{B}^{2})\left(1 + \frac{\sigma^{2}}{2\omega^{2}} + \frac{\sigma}{2\omega}\sqrt{4 + \frac{\sigma^{2}}{\omega^{2}}}\right)}{\mathbf{B}^{2} + \beta^{2} - (\mathbf{B} \times \hat{\mathbf{k}})^{2}}}. \qquad (4.39b)$$

As duas soluções são funções reais, e portanto, não há absorção da onda para uma corrente magnética isotrópica. Em n_1 e n_2 há também a dependência dos índices de refração como funções do ângulo que **B** faz com a direção de propagação da onda $\hat{\mathbf{k}}$. Pode-se notar que, se **B** é paralelo a $\hat{\mathbf{k}}$, as contribuições de β e de **B** se cancelam, e teremos o caso dos índices de refração como funções apenas de σ e da frequência ω . No caso em que **B** é perpendicular a $\hat{\mathbf{k}}$, o campo crítico de BI e a intensidade do campo magnético externo contribuem para os índices de refração. A solução n_1 de (4.39a) para os casos e que **B** é perpendicular a $\hat{\mathbf{k}}$ (linha preta), e que **B** é paralelo a $\hat{\mathbf{k}}$ (linha vermelha) estão ilustradas na figura (4). Neste gráfico, consideramos os valores de $\beta = 2.0 \text{ MeV}^2$, $B = 2.5 \text{ MeV}^2$ e $\sigma = 0.1 \text{ MeV}$. No regime de altas frequências ambas as curvas tendem a um índice de refração máximo, tal que satisfaz a condição de $n_{1\perp} > n_{1\parallel}$, onde $n_{1\perp} \simeq 1.6$ e $n_{1\parallel} \simeq 1.0$, quando $\omega \rightarrow \infty$.

O gráfico da solução n_2 está mostrado na figura (5). A linha preta corresponde à

Figura 5 – A solução n_2 de (4.39b) como função da frequência ω .

B perpendicular a $\hat{\mathbf{k}}$, e a linha pontilhada vermelha é a curva de **B** paralelo a $\hat{\mathbf{k}}$. Nesta figura também consideramos $\beta = 2.0 \,\text{MeV}^2$, $B = 2.5 \,\text{MeV}^2$ e $\sigma = 0.1 \,\text{MeV}$. Agora, as curvas atingem assíntotas horizontais mínimas para altas frequências, onde $n_{2\perp} \simeq 1.6$ e $n_{2\parallel} \simeq 1.0$, onde $\omega \rightarrow \infty$.

Desde que os índices de refração obtidos dependem do ângulo $\cos \theta = \mathbf{B} \cdot \hat{\mathbf{k}}$, o fenômeno da birrefringência aparece como consequência destas soluções. A definição do mesmo vem pela diferença dos índices de refração

$$\delta n_i = n_{i\parallel} - n_{i\perp} , \qquad (4.40)$$

onde i = 1, 2, e $n_{i\parallel}$ denota o índice de refração quando **B** é paralelo a $\hat{\mathbf{k}}$, e $n_{i\perp}$ quando **B** é perpendicular a $\hat{\mathbf{k}}$. Usando as soluções então obtidas, as variações dos índices de refração são dadas por

$$\delta n_{1} = \sqrt{1 + \frac{\sigma^{2}}{2\omega^{2}} - \frac{\sigma}{2\omega}\sqrt{4 + \frac{\sigma^{2}}{\omega^{2}}}} - \sqrt{\left(1 + \frac{\mathbf{B}^{2}}{\beta^{2}}\right)\left(1 + \frac{\sigma^{2}}{2\omega^{2}} - \frac{\sigma}{2\omega}\sqrt{4 + \frac{\sigma^{2}}{\omega^{2}}}\right)}, (4.41a)$$

$$\delta n_{2} = \sqrt{1 + \frac{\sigma^{2}}{2\omega^{2}} + \frac{\sigma}{2\omega}\sqrt{4 + \frac{\sigma^{2}}{\omega^{2}}}} - \sqrt{\left(1 + \frac{\mathbf{B}^{2}}{\beta^{2}}\right)\left(1 + \frac{\sigma^{2}}{2\omega^{2}} + \frac{\sigma}{2\omega}\sqrt{4 + \frac{\sigma^{2}}{\omega^{2}}}\right)}. (4.41b)$$

As curvas da birrefringência como funções da frequência estão mostradas na figura (6). Para esse gráfico, usamos $\beta = 2.0 \text{ MeV}^2$, $B = 2.5 \text{ MeV}^2$ e $\sigma = 0.1 \text{ MeV}$. A solução δn_1 atinge um mínimo de birrefringência em $\delta n_{1min} \simeq 0.6$. Enquanto que, a solução δn_2 atinge um máximo de birrefringência em $\delta n_{2min} \simeq 2.6$, quando $\omega \rightarrow \infty$.

Figura 6 – A birrefringência de δn_1 e δn_2 como funções da frequência ω .

5 Conclusão

O objetivo deste trabalho foi compreender como as ondas eletromagnéticas se propagam dentro de um condutor na teoria de Born-Infeld. Para isso, apresentamos a eletrodinâmica de Maxwell e seu formalismo lagrangeano como uma revisão para o estudo das eletrodinâmicas não-lineares (NLEDs). Posteriormente, apresentamos as eletrodinâmicas não-lineares mais conhecidas na literatura, como Euler-Heisenberg, ModMax, Exponencial e Logarítmica. Aplicamos o princípio variacional e obtivemos as equações de movimento para uma NLED genérica. Neste trabalho, dedicamo-nos a apenas a eletrodinâmica de Born-Infeld (BI). Com isso, o campo elétrico, potencial elétrico e energia elétrica de Born-Infeld de uma carga pontual em repouso foram calculadas e ilustradas como funções da distância neste trabalho.

No capítulo seguinte, usamos as equações de campo de uma NLED genérica e calculamos o tensor energia-momento do campo eletromagnético naõ-linear. As componentes do tensor energia-momento, como o vetor de Poynting e a densidade de energia contém propriedades importantes do princípio da conservação de energia do campo eletromagnético. Assim, para o caso de BI, calculou-se a auto-energia conservada para uma carga elétron. O teorema do momento linear também foi obtido em termos da densidade de força de Lorentz, do momento linear do campo eletromagnético, e do tensor de pressão de BI.

No capítulo 4, usamos a prescrição de linearização da ED de BI, usando um campo magnético externo, constante e uniforme. Assim, obtivemos as equações de campo de BI linearizadas nas quais as soluções de ondas planas mostram as propriedades da propagação das ondas em termos do campo megnético externo e da direção de propagação da onda. Com o objetivo de estudar a dispersão e absorção das ondas num meio material, usamos a Lei de Ohm para calcular os possíveis índices de refração do meio material como função do campo magnético externo, da condutividade do material e da frequência da onda. As partes real e imaginária foram obtidas em termos do ângulo que o campo magnético externo faz com a direção de propagação da onda, revelando que a escolha da direção de \mathbf{B} com $\hat{\mathbf{k}}$ muda as características das soluções dos índices de refração.

Por fim, usamos também a densidade de corrente de natureza magnética, onde o vetor densidade de corrente é proporcional ao campo magnético para um material isotrópico. Neste casso, as soluções dos índices de refração não apresentam a absorção das ondas no meio material. Contudo, a dependência das soluções com direção que **B** faz com $\hat{\mathbf{k}}$ também permanece neste caso. E assim ilustramos o comportamento destas soluções como funções da frequência da onda. O índice de refração n_1 (eq. 4.39a) atinge um

máximo para altas frequências. Para o caso em que **B** é perpendicular a **k**, a saturação do índice de refração é maior do que o caso de **B** paralelo a **k**. Todavia, o índice de refração n_2 (a segunda solução possível) é inversamente proporcional a frequência. Quando **B** é perpendicular a $\hat{\mathbf{k}}$, o decaimento é abrupto em comparação ao caso em paralelo. Assim, observamos que tanto o declínio das curvas quanto a sua saturação, dependem do ângulo entre **B** e $\hat{\mathbf{k}}$.

De posse dos índices de refração da corrente magnética, foi possível calcular a birrefringência do meio material, para as duas soluções encontradas. Para as birrefringências dos dois índices de refração, há uma inversão do gráfico, devido $n_{\perp} > n_{\parallel}$. Fazendo, com que a solução δn_1 decaia, e a solução de δn_2 sature numa birrefringência máxima para altas frequências.

Referências

- [1] GRIFFITHS, D. J. Eletrodinâmica. 3. ed. São Paulo: Pearson Addison Wesley, 2011.
- [2] DA SILVA, A. V. ELETRODINÂMICA NA PRESENÇA DE UMA ESCALA DE COMPRIMENTO MÍNIMO. 76 páginas. Monografia - curso em licenciatura em Física - Universidade Federal Rural do Rio de Janeiro, Seropédica, 2015.
- [3] AKMANSOY, P. N. Vínculos de eletrodinâmicas não lineares. 232 páginas. Tese (Doutorado em Física) - Curso de Física - Universidade Federal DO RIO GRANDE DO NORTE, 2018.
- [4] PRESKILL, J. Magnetic Monopoles. Ann. Rev. Nucl. Part. Sci., v. 34, p. 461-530. 1984.
- [5] VANDERLINDE, J. Classical Electromagnetic Theory (Fundamental Theories of Physics). Springer, 2005.
- [6] BORN, M.; INFELD, L. Foundations of the new field theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, v. 144, n. 852, p. 425–451, mar 1934.
- [7] BORN, M.; INFELD, L. On the quantization of the new field equations. i. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, v. 147, n. 862, p. 522–546, dec 1934.
- [8] BOILLAT, G. Nonlinear electrodynamics: Lagrangians and equations of motion. Journal of Mathematical Physics, AIP Publishing, v. 11, n. 3, p. 941–951, mar 1970.
- [9] Pinto. D. Cálculo Diferencial e Integral de Funções de Várias Variáveis. 1° edição. Rio de Janeiro: UFRJ, 2015.
- [10] TIPLER, P. A., LLEWELLYN, R. A., Física Moderna 3^a Edição, Rio de Janeiro: LTC, 2001.
- [11] HOFFMANN, B. Gravitational and electromagnetic mass in the Born-Infeld electrodynamics. Physical Review, American Physical Society (APS), v. 47, n. 11, p. 877–880, jun 1935.

- [12] SOLENG, H. H. Charged black points in general relativity coupled to the logarithmic U(1) gauge theory. Physical Review D, American Physical Society (APS), v. 52, n. 10, p. 6178–6181, nov 1995.
- [13] HENDI, S. Asymptotic Reissner–Nordström black holes. Annals of Physics, Elsevier BV, v. 333, p. 282–289, jun 2013.
- [14] Nussenzveig, H.Moysés, Curso de Física Básica 3 Eletromagnetismo 2ª Edição, Edgard Blücher LTDA São Paulo, 2015.
- [15] NEVES, M. J. et al. Dispersion relations in nonlinear electrodynamics and the kinematics of the Compton effect in a magnetic background. Physical Review D, v. 104, n. 1, p. 015006, 2021.