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Abstract: In developing countries, irrigation can help to decrease poverty in rural areas through
increased employment in the agricultural sector. Evidence shows that irrigation may increase farm
productivity and technical efficiency. In this paper, we estimate the effect of irrigation on farm
technical efficiency in Brazil using the 2006 Agricultural Census dataset on more than 4 million
farms. We estimate a stochastic production frontier at farm level, considering potential selection bias
in irrigation adoption. We find that farms using irrigation are on average 2.51% more technically
efficient compared to rain-fed farms. Our findings also suggest that while small farms are more
efficient than medium and large farms, the largest difference in technical efficiency between rain-fed
and irrigated farms is among large farms. Our results indicate that policies that seek to support
expansion of irrigation adoption has also the potential to achieve greater rural development given
the estimated effects estimated in this paper among very small and small farms, which are more than
70% of the farms in Brazil.

Keywords: irrigation; entropy balancing; stochastic production frontier; technical efficiency

1. Introduction

The great variability of precipitation in Brazilian regions led farmers to adopt irrigation
to mitigate the adverse effects of climate change [1]. The implementation of irrigation
systems by farms in Brazil can potentially raise the standard of living of rural population
by reducing poverty and increasing food security.

The adoption of irrigation systems is an important technology that can lead to increases
in agricultural productivity [2]. It also has potential to minimize the risks caused by
climate change, which is associated with one of the main causes of agricultural production
vulnerability [3]. Irrigation adoption can be used as a tool to reduce dependency on variable
rainfall and water availability [4], decreasing the uncertainty surrounding crop yields and
securing income and employment in the rural areas [5].

Several studies analyzed the irrigation adoption as an adaptive strategy under climate
change scenarios in Brazil and find that adoption is also driven by climate change and
used as a response to the precipitation reduction [1,6]. Although the use of irrigation is not
uniform across Brazilian regions, it is expected to increase in the next 30 years given that
irrigation is used as an adaptive strategy [7,8] and the agricultural sector is the sector most
affected by climate change [9].

Irrigation systems are increasingly becoming more efficient in relation to water us-
age [10,11]. The actual debate about water scarcity supports studies that are testing the
ability of irrigation systems to alleviate water scarcity, which can also provide useful infor-
mation to policymakers [12]. As argued by [13], the greatest interest lies on the arid and
semi-arid regions, where non-uniform precipitation constrains the natural development of
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crops. In addition, the competition for existing freshwater supplies requires maximizing
water productivity in crop production [14,15].

Irrigation can generate higher yields holding other inputs constant. Adoption of
irrigation has also the potential to improve technical efficiency, the movement toward the
efficient frontier. Estimates of technical efficiency are often used to design programs for
performance improvement, which involve changes to the management (e.g., education and
training programs) and structure of the firm, as the operating environment [16]. Technical
inefficiency indicates how far a farm is from the efficient frontier. In other words, it indicates
the level of output that could be achieved using the same level of inputs [17,18]. There are
a few studies that focus in the estimation of water efficiency such as [13]. It is important to
state that the concept of technical efficiency is quite different from the concept of irrigation
efficiency, which is termed as the ratio between the amounts of water actually used by the
crop and the total amount applied [13,19,20].

Increases in technical efficiency are achieved with the appropriate combination of in-
puts used in the production process, reducing unnecessary amounts of resources to achieve
the same level of production. This is in line with the 2th UN Sustainable Development Goal,
which conceptualizes the end of hunger, the achievement of food security and improved
nutrition, and the promotion of sustainable agriculture by 2030 [21]. It also indicates that
by 2030, agricultural productivity may double, as well as the incomes of small scale-food
producers, in particular family farmers and other vulnerable people in rural areas. Resilient
agricultural practices that increase productivity and production, that strengthen capacity
for adaptation to climate change, extreme weather, droughts, among others, are part of this
Goal [21]. Their agenda also highlight the importance of rural infrastructure, agricultural
research, extension services, and technology development to enhance agricultural produc-
tive capacity in developing countries [21]. The adoption of irrigation can also contribute
to the achievement of these goals by reducing poverty and ensuring food production in
areas of climatic vulnerability. In this paper, despite all the benefits listed above, only 6.3%
of the farmers use irrigation in Brazil in 2006 [22]. However, there has been considerable
growth in the use of this technology. Aggregate data from the 2017 Agricultural Census
indicates that the number of farms that used irrigation increased by 52.6% compared to the
2006 Agricultural Census, while t area irrigated grew approximately 47.6% [23]. In 2017,
more than 500,000 farmers used irrigation in 6.7 million hectares [23]. In 2006, most of the
agricultural areas in Brazil were irrigated using conventional sprinkler (35%), followed
by flooding (24%) and central pivot (19%) [22]. Additionally, localized irrigation (drip
and micro-sprinkler) accounted for only 8% of the area irrigated. In comparison, in2017
conventional sprinkler remained the most widespread method (27.21%), followed by flood-
ing (21.02%) and central pivot (20.78%) [23]. The 2017 Ag. Census provide disaggregated
information on localized irrigation - drip and micro-sprinkler irrigation represented 15.04%
and 8.95% of the areas irrigated respectively [23]. The remaining were irrigated by furrows
(1.3%) and other methods (5.25%) [23]. Trifonov et al. [24] argue that drip and micro-
sprinkler irrigation exert less pressure on water resources and achieve greater irrigation
efficiency compared to other methods, providing an ideal amount of water and fertilizer
in the root zone of the plant. Brazilian farmers have been increasingly adopting the most
efficient irrigation methods, aiming at the rational use of water. However, there is still
room for improvement moving away from flooding to more efficient irrigation methods,
i.e., “on-demand”, such as drip irrigation.

Despite the growth in adoption rates and area irrigated in Brazil during the period
2006–2017, the still low adoption rate generates doubts about its effect on the productive
performance among farmers. The effect of irrigation on technical efficiency among irrigators
and rain-fed farmers might be different, even across different farms sizes. These farmers
deal with climatic variability differently, having different adoption behavior [25]. As farm
size increases the feasibility, implementation, operations, and management of irrigation
systems may become increasingly complex; this may compromise farmers’ performance.
However, this is a hypothesis that must be tested. There is a vast literature that discuss the
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relationship between farm size and production, efficiency, and productivity such as [26],
paper discussed in the Section 3.2.

In Brazil, even though most of irrigation projects are financed by private initiatives,
the government has indirectly covered irrigation projects through the provision of credit
to rural producers [27]. One of the goals is to adapt to climate variation and increase
production and profitability. The measurement of the difference on technical efficiency
between irrigators and rain-fed farmers could also provide support for an increase in
investments and support by governmental policies to encourage the adoption of irrigation
technology.

There is a vast literature on farm technical efficiency estimation [28–31]. Simple com-
parison of technical efficiency estimates from two set of samples, for example, irrigators
and rain-fed farmers, can lead to bias results because of the potential endogeneity issue
associated with the characteristics determining irrigation adoption [28]. The adoption is
a choice made by the farmer and is affected by observable factors (e.g., farm and pro-
ducer characteristics, such as income, schooling, experience, etc.) and unobservable factors
(e.g., farmer managerial capacity). Villano et al. [31] point out that by disregarding these
characteristics, the results may be biased, which limits the analysis of the true effect of
irrigation adoption on farmer’s performance. The objective of this paper is two-fold: fill
the gap in the literature on technical efficiency estimation for Brazilian farms considering
irrigation as a key variable; and identify the effect of irrigation on the technical efficiency
of irrigators and rain-fed heterogeneous farmers by farm size. To do so we use a simple ap-
proach that consider the effect of observable and unobservable when estimating the effect
of irrigation on farm technical efficiency. We use farm level data from 2006 Agricultural
Census, a database with almost 5 million farms in Brazil.

This paper is organized in four sections besides this introduction. In the following
subsection, we present a brief literature on technical efficiency and irrigation. The materials
and methods are presented in Section 2; Results are shown in Section 3, and, finally, in
Section 4, we present our final conclusions about the research.

Background

The difference in technical efficiency between irrigators and rain-fed farmers has been
widely studied. In this section we will review some of these papers. Anang et al. [32]
compared technical efficiency of irrigated and rain-fed rice farms in Northern Ghana and
found that, on average, farms using irrigation were 9.2% more efficient than the rain-fed
farms. They reinforce the need for investment in irrigation infrastructure as a mechanism to
reach poverty reduction and food security. Babatunde et al. [33] examined the determinants
of yield gap and technical efficiency between rain-fed and irrigated rice production in
Nigeria, and found that irrigated rice producers were 11% more technically efficient than
rain-fed farmers. Opata et al. [34] also found that irrigators were 38% more technically
efficient than rain-fed farmers in rice production in Nigeria. Mkanthama et al. [35] found
a great difference in technical efficiency in rice production in Tanzania, where technical
efficiency was 96% for irrigators compared to 39% for rain-fed farmers. Lower technical
efficiency for rain-fed producers was also found by Makombe et al. [36], where rain-fed
farmers’ technically efficiency was 6% and for irrigators around 24%.

On the other hand, there are studies that found an opposite effect, where rain-fed
farmers are more technically efficient than irrigators producers [36–39]. Cobrehaweria
et al. [37] estimated technical efficiency of irrigated and rain-fed smallholder agriculture in
Ethiopia and found that rain-fed were 82% technically efficient while irrigators were 45%.
They also found that access to credit and number of skilled household members reduces
the technical inefficiency of irrigated agriculture.

Melesse and Ahmed [38] compared the technical efficiency between irrigators and
rain-fed farmers in potato production in Eastern Ethiopia and found that rain-fed farmers
were 75% technically efficient while irrigators were 50% [39] found an average technical
efficiency (TE) of 81% and 68% when examining the same product in the same country.
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They found that schooling, soil condition, and seed size affected positively TE. They also
found that age of the household head positively affected the TE of irrigators, indicating
that experience through age matters in production. Also for Ethiopia, Makombe et al. [40]
found that the average technical efficiency for the small-scale irrigated farmers was 71%
and for rain-fed farmers was 78%. Vrachioli et al. [41] found for 56 small-scale greenhouse
farms from the island of Crete, Greece an average technical efficiency lower for farmers
that adopted sprinklers compared to non-irrigators.

Also relevant to our analysis is the literature that investigate the determinants of
technical efficiency such as the factors that affect the technical efficiency level of irrigators
and rain-fed farmers. Adhikari et al. [42] found that variety type and irrigation have a
positive effect on the technical efficiency of potato production, where irrigators are 10%
more efficient than rain-fed producers in Nepal. The authors reinforce that farmers could
increase the technical efficiency level with better use of available resources, the use of
improved varieties, and irrigation as well.

Adelodun et al. [43] compared farm level of four major crop production systems under
the irrigation scheme in Nigeria. The estimated technical efficiency was up 40%. A similar
study for smallholders in Ghana was carried out [44], which found an average technical
efficiency of 78.1%. The latter studies investigated the determinants of technical efficiency
and found that education, experience, credit accessibility, off-farm income, extension
services, among other factors, positively affect the technical efficiency level.

Yusuf.et al. [45] estimated technical efficiency in rain-fed rice production for Nigeria
and found that farmers’ average technical efficiency was 74.2%. They find that farming
experience; efforts to acquire more knowledge and skills; adequate extension services,
and governmental support in training youths in the agriculture field would improve the
technical efficiency of the farmers.

These papers indicate that there is no consensus whether irrigation can lead to more
technically efficient farmers compared to non-irrigators. To the best of our knowledge, it is
lacking in the literature a paper that performs a study in large scale of Brazilian farms that
estimate and compared technical efficiency between irrigators and rain-fed farmers. There
are a few studies that have investigated only small and specific irrigated areas [46–48].

2. Materials and Methods

Two methodological approaches are used to identify the effect of irrigation on farmers’
technical efficiency. Due to the possibility of selection bias in irrigation adoption from pre-
treatment observable characteristics, a simple comparison of the technical efficiency scores
between irrigators and rain-fed farmers may be biased. The decision to irrigate is a farmer
optimization problem influenced by their personal characteristics, economic conditions,
and climatic factors, among others [6,25,49]. Thus, comparison between irrigators and
rain-fed producers would result in an overestimation of the technical efficiency due to the
self-selection bias [41].

The Entropy Balancing method is appropriate to find a group as similar as possible
to the group of irrigators to eliminate the bias caused by such observable characteristics.
Hence, the strategy consists of estimating the production function using the Stochastic
Frontier Approach (SFA) for each group considered through the two-stage approach
developed by Heckman et al. [50]. The combination of the two approaches allows us to
obtain comparable technical efficiency scores between the groups and within the groups
(according to the farm size), and also controls the biases from observable and unobservable
characteristics [29,51].

Finally, the production stochastic frontier approach described by Battese and Coelli [52]
allows us to model an equation to explain the factors that influence technical efficiency
(or its variability) of the farmers, which has been widely used to explain efficiencies’
determinants [33,37,39,42,53].
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2.1. Entropy Balancing

Hainmueller [54] developed a multivariate method that allows us to weight a data
set such that variables’ distributions in the reweighted sample satisfies a set of special
conditions of moments, so that there is an exact equilibrium on the first (mean), second
(variance), and third (asymmetry) moments of the distributions of covariates in both
treatment and control groups. In summary, this method allows the researcher to specify a
desirable level of equilibrium for the covariates, using a set of conditions associated with
the moments of the distribution.

To demonstrate the weighting procedure proposed, consider a sample with n1 observa-
tions belonging to the treatment group and n0 control units, which were randomly selected
from a population of size N1 and N0, respectively (n1 ≤ N1 e n0 ≤ N0). Let Di ∈ {1, 0}
be a binary treatment variable, where it assumes a value equal to 1 if unit i belongs to
the treatment group, and 0, otherwise. Let X be a matrix containing the observations of
J pre-treatment exogenous variables; Xij corresponds to the value of the j-th covariate of
unit i, such that Xi =

[
Xi1, Xi2, . . . , Xi J

]
refers to the characteristic vector of unit i and Xj

refers to the column vector with j-th covariates.
The entropy balancing generalizes the propensity score weighting approach by estimat-

ing the weights directly from a set of equilibrium constraints that exploit the researcher’s
knowledge about the sample moments. Consider wi the weight of the entropy balancing
chosen for each control unit, which were found by the following reweighting scheme that
minimizes the entropy metric distance:

min
wi

H(w) = ∑{i|D=0} wi log(wi/qi) (1)

subject to the equilibrium and the normalization constraints

∑{i|D=0} wicri(Xi) = mr r ∈ 1, . . . , R (2)

∑{i|D=0} wi = 1 (3)

wi ≥ 0 for all i, such that D = 0 (4)

where qi = 1/n0 is a basis weight and cri(Xi) = mr describes a set of R imposed con-
straints on the covariates moments in the reweighted control group. Initially, the co-
variates are chosen and included in the re-weighting procedure. For each covariate, a
set of balancing constraints (Equation (2)) is specified to match the covariate distribu-
tions moments between treatment groups and re-weighted controls. A typical balancing
restriction is formulated such that mr contains the moment of a specific covariant Xj
for the treatment group. The momentum function for the control group is specified as:
cri

(
Xij

)
= Xr

ij or cri
(
Xij

)
=

(
Xij − µj

)r with mean µj.
Thus, to a set of units, entropy balancing looks for weights W = [wi, . . . , wn0 ]

′ which
it minimizes Equation (1), where is the entropy distance between W and the weight base
vector Q = [qi, . . . , qn0 ]

′, subject the balance constraints in Equation (2), normalization
constraint (Equation (3)), and non-negativity constraint (Equation (4)).

The moment restriction applied here refers to the imposition of the first moment. Thus,
for all covariates (chosen based on their influence on the irrigation adoption), the method
calculates the means in the treatment group and seeks for a set of entropy weights such
that the weighted means of the control group are similar. Such weights are used in the next
steps to obtain unbiased estimates of selection bias caused by the observables factor.

2.2. Sample Selection Model

The existence of sample selection bias due to the fact that there are factors influencing
the irrigators and rain-fed producers’ technical efficiency that are different from those
influencing the probability of adopting irrigation should be verified. The methodological
procedure proposed by [50] allows us to verify the possible selection bias mentioned. The
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method consists of two stages, in which a binary choice model is estimated in the first stage
with the purpose of explaining, through the selection equation, the probability of farmers
to adopt irrigation.

In the second stage, the production stochastic frontier for each group (irrigators and
rain-fed farmers) is estimated. Thus, the Inverse Mills Ratio (obtained in the first step) is
incorporated as a covariate with the purpose of correcting the sample selection bias. We
also use the weighting scheme obtained in the Entropy Balancing to estimate the production
function. The existence of the selection bias is confirmed when the Inverse Mills Ratio is
statistically significant [55].

2.2.1. Selection Equation

The selection equation proposed by [50] is estimated using a Probit model, where the
likelihood of a farmer to adopt irrigation is explained. Let d∗i be a binary variable that
represents the (unobservable) selection criterion as a function of a vector of exogenous
variables zi. The Probit model can be defined as:

di = α′ zi + wi (5)

where α is the vector of parameters to be estimated, and wi is the error term distributed as
N
(
0, σ2

w
)
. The latent variable d∗i is observed and receives the value 1 when α′ zi + wi > 0,

and zero otherwise:
d∗i = 1

[
α′ zi + wi > 0

]
, wi ∼ N(0, 1) (6)

2.2.2. Stochastic Frontier Approach (SFA)

After weighting the sample using the Entropy Balancing and taking into account the
sample selectivity bias due to the irrigation adoption decision, the production function and
then technical efficiency scores is estimated by the Production Stochastic Frontier Approach
(SFA).

The SFA has been widely used in studies of crop efficiency and productivity due to
random factors involved in production that cannot be neglected [56,57], as well as factors
which influence the production technical efficiency.

We follow the approach in [52] to specify the stochastic frontier that simultaneously
models the technical inefficiency, which can be specified as:

Yi = f (Xiβ)e(vi−ui) (7)

where Yi represents the output of the i-th farm (i = 1, . . . , N); Xi is a vector (1 x k) of inputs
and other explanatory variables associated with the production of the i-th farm; β is a
vector (k x 1) of unknown parameters to be estimated; vi represents the random error term
that captures shocks that are out of producer control (climate, pests and diseases, measure-
ment errors, etc.), which is assumed to be independent and identically distributed (iid)
N
(
0, σ2

v
)

and; ui are non-negative random variables associated with technical inefficiency
of production, i.e., it is the part that constitutes a downward deviation with respect to the
production frontier (best practice), which is assumed to be independently distributed with
a half normal distribution with mean zero and variance σ2, such that N

(
0, σ2

u
)
.

Thus, the equation expressed by (7) specifies the stochastic frontier production function
in terms of original production values. Following the specification described in [58], the
term that explains the technical inefficiency of production, ui, can be represented by:

ui = exp
(
z′ iδ

)
ei, (8)

where zi is a vector (1 x m) of explanatory variables associated with the technical ineffi-
ciency of the i-th productive unit. δ is a vector (m x 1) of unknown coefficients and; ei are
random errors defined by the half normal distribution with mean zero and variance σ2.
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This equation can be modeled by specifying that inefficiency component is heterocedastic,
which the variance is expressed as a function of the covariates defined in zi.

Moreover, it is necessary to define the functional form of the stochastic frontier [52].
Several functional forms can be used in productive analyses, such as the Translog and
Cobb–Douglas production functions. Translog frontier is more likely to be susceptible
to multicolinearity even if it is more flexible [59]. The last one presents constant returns
to scale, unit elasticity of substitution, and its coefficients directly represent the output
elasticity of inputs [60]. The Likelihood Ratio Test (LR Test) may be conducted to test the
model specification of the stochastic production frontier. The null hypothesis of the LR Test
is that all the interactions and second order terms regarding Translog specification equal
zero [52].

Once the stochastic production frontier is estimated, the technical efficiency scores are
obtained following [61] specification, and this efficiency measure is based on the conditional
expectation of ui, given the random error. The separation of the frontier deviations into
their random components and inefficiency can be defined as the ratio between the observed
and the potential output:

ETij =
Yij

Y∗ij
=

Yij

f
(
Xij

) =
exp

(
Xijβ + vij

)
E[exp

(
−uij

)∣∣e]
exp

(
Xijβ + vij

) = E
[
exp

(
−uij

)
|e
]

(9)

where values of ETij equal to zero represents complete inefficiency, and 1 represents full
efficiency [61].

2.3. Empirical Application and Data Source

As discussed before, we use Entropy Balancing Method to obtain the weights for the
control groups. Thus, we estimate the selection equation using a Probit as described in
Equation (6):

d∗i = α0 + α1gender + α2age + α3age2 + α4schooling + α5experience + α6tv + α7phone + α8internet
+ α9energy + α10farm.status + α11urban + α12qualif + α13ag.family + α14priv.exten
+ α15gov.exten + α16coop + α17financ + α18ag.pract + α19chem + α20fert + α21soilph
+ α22water + α23vl.land + α24summer.prec + α25winter.prec + α26summer.temp
+ α27winter.temp + α28winter.temp.sd + α29summer.temp.sd + α30winter.prec.sd
+ α31summer.prec.sd + εi

(10)

All of the variables specified in Equation (10) are described later. We use a production
function weighted by the vectors of weights obtained by Entropy Balancing, and we
included the Inverse Mills Ratio (Mills), which was obtained by the estimation of Equation
(10). We also use some controls to estimate the production function: indicators variables
for each Brazilian Federative Units (States); climatic variables and its interactions with
Brazilian macro-regions indicators; and variables related to farm size. A Cobb–Douglas
functional form can be specified as:

ln Yi = β0 +
N
∑

k=1
βk ln Xki +

N
∑

n=1
βn ln Cni

+
N
∑

n=1

5
∑

r=1
βnr ln CniRr + ρMills +

26
∑

h=1
FSh +

4
∑

g=1
Gg + vi − ui

(11)

where Yi represents the gross value of the production of farm i; Xki is a vector of inputs
k used in production, which are: land, labor, capital, and purchased inputs (expenses);
Cn represents the climatic variables; Rr represents the variables for the five Brazilian
regions; FSh represents indicators variables for Federative Units (States); and Gg represents
variables for the four farm sizes considered. Such variables were included to capture fixed
effects and to control spatial autocorrelation; and standard errors were clustered at the
municipality level. The climatic variables are considered as non-market inputs, i.e., they
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are not found in the market, and therefore, the production function can be termed as
“climate adjusted production frontier” [62]. Finally, the selection bias hypothesis is verified
by evaluating the statistical significance of parameter ρ. The error term vi is due to random
factor and ui is due to technical inefficiency

The production technical inefficiency term ui (Equation (8)) specified [57] is modeled
by a set of covariates already recurrent in the literature with the purpose to explain the
inefficiency variability, being specified as follows:

ui = δ0 + δ1schooling + δ2experience + δ3rural.extension + δ4financing + wi (12)

where schooling refers to the manager’s education level, and it is divided into seven
categories (higher education as base category); experience refers to manager’s experience
into four categories (over 10 years of experience as base category); rural.extension is a
variable that receives value 1 if the producer accessed any type of technical assistance;
financing is a variable that receives value 1 if the producer received any type of financing;
and wi is the random error term, which is assumed to be a half normal distribution. In
the case of rural extensions’ services and financing, the results imply a correlation on
technical efficiency scores due to those services being a farmers’ decision and possibly
being endogenous.

The dataset used in the present research comes from the 2006 Agricultural and Live-
stock Census at farm level, which only can be accessed in the Brazilian Institute of Geog-
raphy and Statistics (IBGE) headquarters in Rio de Janeiro, Brazil. Even though the most
recent Agricultural Census was released in 2017, the data at the farm level is classified and
have not yet made available to researchers in time to update this research, and will not be
available until the Covid-19 pandemic stops. For this reason, we use the 2006 Agricultural
Census in this paper. The dataset contains information on more than 5 million farmers.
The aggregation of the production value across crops is driven mainly by the fact that we
do not have farm-level data on the hectares irrigated by crops, while we do have data on
total hectares irrigated for all crops. In addition, the Brazilian Agricultural Census does
not provide data on production value or quantity produced disaggregated by irrigation
systems used by the producers, which makes it impossible to analyze technical efficiency
by irrigation method. Therefore, our analysis is restricted to information on whether the
farmer use irrigation technology in the production process or not.

To obtain the dataset used in the estimation we dropped farms that have not report
any area (255,019 observations); that are in urban areas (192,350 observations); and clas-
sified as special sectors—favelas, barracks, lodgings, boats, indigenous villages, nursing
homes, etc. (117,530 observations). We also excluded farms belonging to rural settlements
(139,496 observations) to avoid possible variable measurement errors.

In addition, we only have included those farms owned by an individual producer, i.e.,
we excluded those farmers that were considered condominium, consortium, or partner-
ship, cooperative, public limited company or by quotas of limited liability, public utility
institutions, government (Federal, state or municipal), or other condition (190,911 obser-
vations). Likewise, farms whose producer type is “not identified” (20,440 observations)
were excluded. After the exclusion and transformations, 915,746 observations were deleted
(17.7% of the original sample), and the final sample is composed of 4,259,865 farms.

The dataset was also organized into four classes according to the farm size (very small,
small, medium, and large). The sizes were classified by the IBGE according to the fiscal
module classes. Fiscal module classification is defined as the minimum area required for
rural properties to be considered economic viable, ranging in area from 5 to 110 hectares.
Based on the fiscal module, farms are classified as very small (less than 1 fiscal module),
small (between 1 and 4 fiscal module), medium (between 4 and 15 fiscal module), and
large (more than 15 fiscal module) [63]. The data manipulation was performed using SAS®

software, and the methodological procedures were performed using STATA® software.
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The treatment variable, that is, the indicative of the use of irrigation, is a dichotomous
variable and represents the answer to the following question: “Did you use irrigation in
the farm?” In our sample, 6.22% of the farmers reported using irrigation in the farm.

In addition to economic variables, we also use socioeconomics, institutions, agro-
nomics, and climatic characteristics in both entropy balancing and selection equations. All
of these variables were provided by the 2006 Agricultural and Livestock Census, except
those related to climate. Variables used in the sample selection (Equation (10)) are described
as follows: The variable gender is a variable that equals 1 if the farm’s manager is male and
0 otherwise; age is the manager’s age; schooling is a categorical variable related to the farm
manager’s education level: do not read and write, literate, incomplete elementary school,
complete elementary school, agricultural technician, high school, and higher education
(base); experience is a categorical variable that represents the years in which the manager is
in the farm header activity: up to one year, between 1 and 5 years, between 5 and 10 years,
over 10 years (base). We also included information on some resources as tv (television),
phone, internet, and energy, which are variables that receive a value equal to 1 if the farmer
has the resource, and 0 otherwise.

Other characteristics such as farm ownership, whether the farmer lives in urban area
or not, the presence of skilled labor in the farm workforce, and family farm classification
may influence irrigation technology adoption. We explore the farm ownership (farm.status)
by including a categorical variable: owner (base), tenant, partner and occupant. Urban is a
variable set with value 1 if the farm’s manager lives in an urban zone and zero otherwise;
qualify is a dummy that captures the presence of skilled labor with value equal to 1 and 0
otherwise; and ag.family is a variable indicating if the farm is a family farm based on the
classification reported in the Law 11.326 of 07/24/2006.

We consider that the access to services and financing play an important role on
the likelihood of irrigation adoption. In this sense, we capture access to services by
including variables with values equal to 1 if the farmer had received private extension
services (priv.exten), governmental extension services (gov.exten), and if they were co-ops
membership (coops). Financ is a dummy that represents the access to any type of financial
resource (rural credit).

We added some variables to capture agronomic characteristic and natural resources
endowment on the likelihood of irrigation adoption: Ag.pract is a variable equal to 1 that
indicates if the farmer uses any agricultural practice (planting in a level curve; terraces;
crop rotation; use of crops for pasture recovery; fallow or rest of the soil; burned; and
protection of slopes and 0 otherwise; chem, fert, and soilph are variables that inform if the
farmer used chemicals, fertilizers and/or have corrected the soil pH, respectively. These
variables received a value of 1 in an affirmative case, and zero otherwise. To capture natural
resources endowment, we set a variable equal to 1 if the farm has any water resource (rivers
or streams; natural lakes or dams; and wells/cisterns), and zero otherwise. Furthermore,
we also included the value of the land (vl.land) in US$ from 2006.

Climatic variables are cumulative precipitation (in millimeters) segregated by summer
(summer.prec) and winter (winter.prec); and summer temperature (summer.temp) and
winter temperature (winter.temp) in degrees Celsius for the period of 2003–2006, which
were averaged by municipality. To use climatic variables at the farm level, it would be nec-
essary to obtain the longitude and latitude of the farm, which violates the confidentiality of
the dataset provided by IBGE. In this sense, the assumption adopted in this research is that
the climatic variables at the municipal level fit a good approximation for those that would
be observed within the farm. We also have included both temperature and precipitation
standard deviation by season as a proxy to intra-annual climatic anomaly. Climatic Dataset
was obtained from the Climate Research Unit—CRU/University of East Anglia [64]. As
our analysis in this research uses a cross-sectional dataset in the production function, we
assume that the climatic dataset for three years before (2003–2005) the production process
and, for the current year (2006), is sufficient enough to help farmers decide to use irrigation
or not.
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We use in the production function the gross value of production in 2006 (GVP) as a
proxy to the output (dependent variable). As inputs, we use land, labor, expenses, and
capital. Land is the sum of the farm area designed to crops and pastures (in hectares); Labor
is the sum of both family and hired labor; Expenses are the sum of purchased inputs (US$ of
2006) as energy, soil correctives, fertilizers, agrochemicals, animal medicines, transportation,
packages, seeds and seedlings, and feed/salt; Capital is the sum of buildings, land, and
vehicles (US$ of 2006).

3. Results and Discussion
3.1. Descriptive Analysis and Entropy Balancing

The descriptive statistics of the variables used are displayed in Table 1, which also
shows the result of the Entropy Balancing. In general, farmers that use irrigation have
higher levels of schooling, (4.5% with higher education compared to 2.5% among rain-
fed farmers). As can be observed, irrigators have a higher share of electricity and the
workforce with skilled labor. Regarding the age, experience, and farm ownership, there are
no disparities on averages between the groups.

Despite the large proportion of irrigators with water resources in the farm, around 87%,
we also observe a large proportion of farmers that have water resources in the farm and
do not use irrigation technology (74.2%). This result may be related to the low proportion
of rain-fed farmers that received rural extension (mainly governmental extension) and
accessed financial resources when compared to irrigators (Table 1). However, irrigation
may not be needed when farmers are facing regularity in precipitation as observed in some
regions of Brazil.

We also can observe significant differences in the proportion of irrigators that per-
formed some agricultural practice (e.g., crop rotation) and irrigators that used agrochem-
icals, fertilizers, and soil pH correctives, which may imply that these farmers had used
irrigation technology with some soil management seeking to ensure crops’ yield. This
might also explain why the value of the land (asset) of the irrigators is greater than rain-fed
farmers, in other words, due the technology embodiment [65].

The great difference between the groups can be observed in the gross value of produc-
tion obtained in 2006 by the irrigators’ farmers, which is almost two times higher when
compared to rain-fed producers. This result shows the importance of irrigation in national
agricultural production in terms of value produced and, therefore, productivity gains
from irrigation, which demonstrates the advantages of this technology. However, this
result can also be explained in part by the effect of scale economies that irrigation could
provide, mainly for large farms, given that they have more resources to access the latest
technology, they are more educated, and they have facilities to access the credit market and
rural services extension. Economies of scale are achieved when the increase in production
results in a decrease in the product average cost. However, our results do not provide any
information about scale efficiency. However, rural development policies should not take
into account the effects of economies of scale to invest and provide adequate support to
expand irrigation, otherwise it could benefit only large producers, which would break,
with the UN Sustainable Development Goals.

Finally, the value of land, buildings, and vehicles (proxy for capital), expenses in
purchased inputs and labor have a higher average for irrigators when compared to the
rain-fed. On the other hand, there are no significant differences in the amount of land
employed in crops and pastures, which reinforce productivity gains due to irrigation.

The result of the Entropy Balancing, which is based on the mean of the covariates
(first moment of the sample), can be observed in the column “Balanced sample” in Table 1.
Before the Entropy Balancing, the means of the variables between irrigators and rain-fed
farmers were statistically different. After the Entropy Balancing, we did not find any
statistically significant difference between these groups. This balance is confirmed by the
non-significance of null hypothesis of the test of equality of means (Table 1). It implies that,
for each treatment group, there is a similar control, differing only for irrigation adoption.
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Table 1. Mean of the variables used in the Entropy Balancing, Selection Equation, and Stochastic Production Frontier.

Non Balanced Sample Balanced Sample

Variables Rain-Fed (Control) Irrigators Rain-Fed (Control) Irrigators

Gender 0.876 0.912 *** 0.912 0.912 ns

Age 50.36 49.32 *** 49.32 49.32 ns

Read and write 0.096 0.084 *** 0.084 0.084 ns

Do not read and write 0.252 0.151 *** 0.151 0.151 ns

Literate 0.054 0.038 *** 0.038 0.038 ns

Incomplete elementary 0.424 0.458 *** 0.458 0.458 ns

Complete Elementary 0.081 0.112 *** 0.112 0.112 ns

Agric. Technician 0.012 0.022 *** 0.022 0.022 ns

High School 0.057 0.090 *** 0.09 0.090 ns

Higher Education 0.025 0.045 *** - -
Exp_1 0.026 0.019 *** - -

Exp_1to5 0.166 0.162 *** 0.162 0.162 ns

Exp_5to10 0.169 0.165 *** 0.165 0.165 ns

Exp_10 0.639 0.654 *** 0.654 0.654 ns

Private Extension 0.123 0.185 *** 0.185 0.185 ns

Governmental Extension 0.084 0.170 *** 0.170 0.170 ns

Co-op Membership 0.409 0.443 *** 0.443 0.443 ns

Television 0.198 0.240 *** 0.240 0.240 ns

Telephone 0.230 0.401 *** 0.401 0.401 ns

Internet 0.011 0.030 *** 0.030 0.030 ns

Energy 0.684 0.876*** 0.876 0.876 ns

Financing 0.181 0.230 *** 0.230 0.230 ns

Qualification 0.037 0.075*** 0.075 0.075 ns

Urban 0.133 0.146 *** 0.146 0.146 ns

Agr. Practice 0.581 0.699 *** 0.699 0.699 ns

Water Resource 0.742 0.868 *** 0.868 0.868 ns

Agrochemicals 0.259 0.573 *** 0.573 0.573 ns

Soil pH 0.068 0.237 *** 0.237 0.237 ns

Fertilizers 0.314 0.745 *** 0.745 0.745 ns

Value of Land 71,784.18 91,683.00 *** 91,683.00 91,683.00 ns

Agr. Family 0.852 0.779 *** 0.778 0.778 ns

Owner 0.838 0.852 *** 0.852 0.852 ns

Tenant 0.046 0.534 *** - -
Partner 0.028 0.278 *** 0.278 0.278 ns

Occupant 0.087 0.665 *** 0.665 0.665 ns

Summer precipitation 161.01 162.69 *** 162.69 162.69 ns

Winter precipitation 53.07 43.02 *** 43.02 43.02 ns

Summer temperature 25.7 25.43 *** 25.43 25.43 ns

Winter temperature 21.87 21.38 *** 21.38 21.38 ns

Summer Prec. S. Dev. 81.23 82.96 *** 82.96 82.96 ns

Winter Prec. S. Dev. 30.37 25.14 *** 25.14 25.14 ns

Summer Temp. S. Dev. 0.718 0.812 *** 0.812 0.812 ns

Winter Temp. S. Dev. 0.790 0.797 *** 0.797 0.797 ns

GVP 10,900.92 31,225.24 - -
Labor 2.65 3.55 - -
Land 42.21 42.6 - -

Capital 86,426.93 125,403.53 - -
Purchased Inputs 3629.29 8721.85 - -

N◦ Obs. 3,994,641 265,224 3,994,641 265,224

Source: Research results. Note: ***: Means are statistically different from the control group (rain-fed) at 1%; ns: Means are statistically the
same as in the control group at 1%.
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3.2. Production Elasticities

We estimated the stochastic production frontier for the total sample and for both
irrigators and rain-fed farmers. The parameters of the production function were obtained
by the Maximum Likelihood. The null hypothesis of the LR Test is not rejected at a
high level of statistical significance for three production functions (Pooled, Irrigators,
and Rain-Fed), which means that Cobb–Douglas specification presents more adequacy
to represent the production technology than Translog specification. Results are shown in
Table 2. Therefore, the coefficients estimated represent the production elasticities, except
for climatic variables. For a better visualization, we omitted the parameters of climatic
variables and its interactions with the indicator variables of Brazilian regions; parameters
of the Federative Units (states); and parameters of farm size dummy variables.

Table 2. Functional form specification test—LR test.

Cobb–Douglas Translog X2 Statistic X2 0.99 Value Decision Choice

Pooled −8.613 × 106 −8.521 × 106 −0.02147 67.357
(df = 36)

Acept H0 CD
Irrigators −5.308 × 105 −5.250 × 105 −0.02197 Acept H0 CD
Rain-Fed −8.055 × 106 −7.981 × 106 −0.01845 Acept H0 CD

Source: Research results. Note: CD is Cobb–Douglas production function assuming half normal distribution for the inefficiency effects.

The results for the production function are displayed in Table 3. Wald statistic indicates
a good fit of the model, rejecting the null hypothesis of joint insignificance of the variables
for the three estimated models at 1%. The hypothesis of sample selection bias related
to irrigation adoption was statistically confirmed by the significance of the estimated
coefficients for the Inverse Mills Ratio for both irrigators and rain-fed farmers, which imply
that there are unobservable factors that influence the irrigation adoption decision.

In summary, we found that water resources endowment in the farm increase the
likelihood of irrigation adoption, since the decision to irrigate is correlated to the availability
of this resource in the farm. Results of the selection equation using Probit are shown in
Table A1—Appendix A. In addition, the use of agrochemicals, soil pH correction, and soil
fertilization contributed positively to the probability of irrigation technology adoption.

The estimated model for the Brazilian agriculture (pooled) indicates that purchased
inputs and labor have the highest elasticities, indicating that a 10% increase in the amount
of these factors used would lead to an increase, on average, of 3.85% and 2.84% in gross
value of production (GVP), respectively. Similar results were found in [26,29].

Our results indicate that the production elasticities are different for irrigators and
rain-fed farmers. For the irrigators, we observed the same pattern found for the pooled
model, since the purchased inputs and labor have the highest values. On the other hand,
purchased inputs and land are the factors with the highest production elasticities for rain-
fed farmers. This result may be explained in part by the lack of knowledge of the irrigation
benefits and productive techniques, or constraints in the credit market, which make the
adoption of new technology more difficult. Thus, the only alternative for these farmers
to increase their production is through increments of expenses and workforce. However,
Ullah and Perret [66] point out that labor-intensive farming system can be a source of
employment for rural populations.

The variance of the model was re-parameterized according to Battese and Coelli (1995) [52],
such that σ2

s = σ2
u + σ2

v and λ = σ2
u/σ2

s . The value of λ is between zero and the unity. If
λ is close to zero, it implies that deviations from production frontier are entirely due to
random noise, while a value around unity indicates that most of the deviations are due to
inefficiency. Thus, for the pooled model, we can infer that 73.4% of the deviations from
the efficient frontier come from technical inefficiency sources; for irrigators, 71.3%, and for
rain-fed farmers, 75.4%. This result may be an indicator that irrigators are more efficient
than rain-fed farmers.
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Table 3. Estimation of stochastic production frontier for the total sample, irrigators, and rain-fed farmers, 2006.

Ly(GVP) Total Sample (Pooled) Irrigators Rain-Fed

lx1 (Land) 0.215 *** 0.221 *** 0.278 ***
(0.00999) (0.0154) (0.00694)

lx2 (Labor) 0.284 *** 0.264 *** 0.268 ***
(0.00738) (0.0111) (0.00657)

lx3 (Purchased Inputs) 0.385 *** 0.335 *** 0.333 ***
(0.00639) (0.00899) (0.00530)

lx4 (Capital) 0.0575 *** 0.0291 * 0.0722 ***
(0.0115) (0.0171) (0.00472)

Mills Irrigators - 2.548 *** -
- (0.2016) -

Mills Rain-Fed - - 1.149 ***
- - (0.0605)

Constant 3.915 16.29 −8.469
(7.6080) (12.1063) (8.6966)

Inefficiency (Usigma)

Read and write −0.625 *** −0.543 *** −0.742 ***
(0.0281) (0.0483) (0.0261)

Do not read and write −0.609 *** −0.516 *** −0.785 ***
(0.0281) (0.0487) (0.0250)

Literate −0.313 *** −0.218 *** −0.442 ***
(0.0409) (0.0740) (0.0340)

Incomplete Elementary −0.681 *** −0.638 *** −0.746 ***
(0.0232) (0.0407) (0.0224)

Complete Elementary −0.522 *** −0.514 *** −0.529 ***
(0.0236) (0.0413) (0.0242)

Agricultural Technician −0.155 *** −0.200 *** −0.124 ***
(0.0297) (0.0490) (0.0345)

High School −0.327 *** −0.328 *** −0.317 ***
(0.0213) (0.0379) (0.0230)

exp_1 1.008 *** 1.046 *** 0.990 ***
(0.0249) (0.0433) (0.0238)

exp_1to5 0.453 *** 0.456 *** 0.460 ***
(0.0149) (0.0267) (0.0141)

exp_5to10 0.238 *** 0.242 *** 0.237 ***
(0.0146) (0.0285) (0.0124)

Technical Assistance −0.261 *** −0.170 *** −0.282 ***
(0.0222) (0.0417) (0.0167)

Financing −0.591 *** −0.557 *** −0.639 ***
(0.0153) (0.0253) (0.0152)

Constant 2.606 *** 2.419 *** 2.753 ***
(0.0245) (0.0422) (0.0237)

Vsigma 0.00500 0.0680 ** −0.148 ***
(0.0250) (0.0347) (0.0192)

E(Sigma_u) 2.775 2.5696 2.8501
Sigma_v 1.0025 *** 1.0346 *** 0.9284 ***

(0.0125) (0.0179) (0.0088)
Lambda (λ) 0.734 0.713 0.754

Log-Likelihood −8.613 × 106 −530,808 −8.055 × 106

Wald Test 42,683.85 22,400.31 64,020.64
Chi2 42,684 *** 22,400 *** 64,021 ***

N◦ Obs. 4,259,865 265,224 3,994,641

Source: Research results. Note: *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1.

Table 3 also shows the result for inefficiency equation. A negative sign indicates that
the variable decreases the inefficiency variance. For all models, we can infer that farmers’
schooling levels has this effect compared to farmers that have higher education (base). On
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the other hand, low levels of experience are associated with an increase in the inefficiency
variance when compared to those who have more than 10 years of farm’s management.
This result implies that higher education is not enough to increase efficiency, but it can
be observed once a farmer has a high level of experience. Tiruneh et al. [39] found that
experience through age matters in production.

High levels of experience linked to a technology transmission channel, such as tech-
nical assistance services and social network, may be more important in new technology
adoption in irrigation than education levels [67]. Although this study [67] did not consider
technical efficiency, they argued that technical assistance and social learning through expe-
rience could help them in this task. In addition, Speelman et al. [68] found that education
did not significantly affect technical efficiency, while Watto and Mugera [49] argued that,
in relation to education effects on technical efficiency, researchers should consider the
relevance of a farmer’s education to his farming business.

We also found that any type of access to technical assistance and financing (credit) affect
the farm technical efficiency. The findings of [29,49,69,70] also confirm the positive effect of
financial resources and extension services in improving the farmer’s technical efficiency.

Notwithstanding, our result can be evaluated through descriptive statistics in Table 1,
in which only 2.5% of rain-fed and 4.5% of irrigators have a higher education level, while
67.6% (rain-fed) and 60.9% (irrigators) do not read and write or did not complete elementary
school. On the other hand, 63.8% (rain-fed) and 65.3% (irrigators) have more than 10 years
of experience in farm management. Moreover, 12.3% and 8.4% of rain-fed farmers had
access to private and governmental technical assistance, respectively. Among irrigators,
18.5% and 17% of them had access to private and public assistance, respectively, which
corroborate with [67,71,72] on the role of social learning, learning-by-doing, and extension
services (mainly governmental assistance) in irrigation technology adoption and efficiency
improvements.

3.3. Technical Efficiency

The technical efficiency scores (TE) were obtained for all models estimated and classi-
fied by farm size. Table 4 shows the results. We found that average technical efficiency of
the irrigators was 29.65%, whereas for those who are rain-fed were 27.14%. These results
imply that irrigation has the potential of increasing technical efficiency. However, there is
room for both irrigators and rain-fed farmers to increase production while maintaining the
same amount of inputs.

Table 4. Mean of technical efficiency scores by farm size, 2006.

Balanced Sample Mean Very Small Small Medium Large

Total Sample
(Pooled)

0.2730 0.2439 0.2629 0.2528 0.2408
(0.1974) (0.1865) (0.1776) (0.1825) (0.1862)

{4,259,865} {3,283,910} {694,116} {208,881} {72,959}

Irrigators
0.2965 0.2909 0.3155 0.3063 0.3019

(0.1702) (0.1744) (0.1540) (0.1609) (0.1655)
{265,224} {196,078} {47,999} {15,337} {5810}

Rain-Fed
0.2714 0.2721 0.2740 0.2602 0.2474

(0.1990) (0.2014) (0.1891) (0.1935) (0.1976)
{3,994,642} {3,087,832} {646,117} {193,544} {67,149}

Source: Research results. Note: Standard deviations in (); Number of observations in {}.

The values of the standard deviations for both irrigators and rain-fed (0.1702 and
0.1990, respectively) suggest that, in relation to the mean, there is a great dispersion of the
data, i.e., a great heterogeneity in terms of technical efficiency, which leads to a low average
of TE. As argued by [73], using the same data, 66% of Brazilian farms produce about 3% of
the production value, of which the majority operate with net income. Such farms are likely
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to be located at the low part of the distribution of efficiency scores. This pattern is hardly
observed when we use more aggregated data (e.g., at the municipality level), since such
farms are geographically dispersed. To confirm this result, TE distributions are shown in
Figure 1 for both groups.
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We found for all models estimated that technical efficiency (TE) scores by farm size,
on average, increase between very small and small farms. Then, the average TE scores
decrease as farm size increases. Therefore, small farmers are the more technically efficient,
which corroborate [74] argument that small farmers are poor but efficient.

A simple test of equality of means (Student t-test) between both group irrigators
and rain-fed farmers and within each group taking into account that the farm size was
performed to verify if the technical efficiency mean scores were different from each other or
were statistically the same. Table 5 shows the result. We found that the all differences of all
the technical efficiency means between and within the groups were statistically significant.
Between irrigators and rain-fed, the difference is 0.02509, and the Student t-test is equal to
−63.3885, which implies the rejection of the null hypothesis of equality of means.

We display the behavior of technical efficiency and farm size in Figure 2. The greatest
difference in terms of average TE between irrigators and rain-fed is for large farms, follow-
ing by the group of mediums. We found a difference between irrigators and rain-fed farms
of 5.45% for the former and of 4.61% for the latter. It implies that, although small farmers
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are, on average, more efficient than the others, irrigation has a stronger effect on TE for
among large farms. The smallest difference in TE due to irrigation adoption was found for
the very small farms, around 1.88%. This last result may be partly explained by the lack of
knowledge on how to operate the technology, difficulties faced in the credit market, and/or
the lack of extension services. [30] pointed out that large farms can have easier access to
institutions and services that help reduce inefficiency such as rural electricity, technical
assistance, and market access; and more intensive in the use of technologies and inputs
that increase productivity, for instance, irrigation technology.

Table 5. Test of equality of means (Student t-test) of the technical efficiency scores, 2006.

Total Sample Irrigators Rain-Fed

Diff. t-test Diff. t-test Diff. t-test

Very Small x
Small

−0.0190 ***
−77.7469

−0.0245 *** −28.2470
−0.0019 *** −7.1581(0.0002) (0.0008) (0.0002)

Very Small x
Medium

−0.0088 ***
−21.1575

−0.0154 *** −10.5884
0.0118 ***

25.1434(0.0004) (0.0014) (0.0004)

Very Small x
Large

0.0030 ***
4.3718

−0.0109 *** −4.7174
0.0246 ***

31.4414(0.0006) (0.0023) (0.0007)

Small x
Medium

0.0101 ***
22.6568

0.0091 ***
6.3279

0.0137 ***
27.9911(0.0004) (0.0014) (0.0004)

Small x Large 0.0220 ***
31.7548

0.0136 ***
6.3062

0.0266 ***
34.5956(0.0006) (0.0021) (0.0007)

Medium x
Large

0.0119 ***
15.1403

0.0044 *
1.7862

0.0128 ***
14.7484(0.0007) (0.0024) (0.0008)

Source: Research results. Note: *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1; Standard Error in (); Diff means the difference of
technical efficiency average.

Figure 2. Average technical efficiency scores by irrigation adoption and farm size, 2006. Source: Research results.

Figure 2 also shows the behavior between technical efficiency scores and farm size
as a smoothed shape of this relationship (quadratic prediction). We found a U-inverted
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relationship between farm size and technical efficiency level. Similar behavior between
technical efficiency (or technical efficiency change) and farm size were found in [26,29,30].
They also found the highest efficiency for small farms. These results indicate that the
greatest gain in technical efficiency is observe among large farms. Expansion or modifica-
tion of public policies in place such as those associated with provision of rural extension
could provide greater support to farms to adopt irrigation leading to a higher technical
efficiency, as shown in Figure 2. A focus in very small and small farms, the majority of the
farms in Brazil, would also contribute to socio-economic development through a decrease
in inefficiency.

4. Conclusions

There is evidence that indicate that irrigation in Brazil may be an effective tool deal
with climate vulnerability [1,6] and to reduce poverty through increase in productivity,
profit and technical efficiency. In this paper we estimate the effect of irrigation on technical
efficiency of farms of different sizes in Brazil using a rich dataset on almost 5 million
farms. To do so, we used a simple approach that accounts for observed and unobserved
characteristics [50,54]. It is a step forward correctly accounting for the effect of these
characteristics in the estimation of unbiased technical efficiency.

Our results indicate that farms with irrigation had higher average technical efficiency
compared to non-irrigators. The analysis by farm size showed that, in among both groups,
small farms are more efficient than the others. However, the greatest difference observed in
the average technical efficiency was observed for medium and large farms, which implies
that irrigation technology has a significant effect on the efficiency gain for those groups.

These results and the literature discussed indicate that several factors that could also
improve technical efficiency such as the provision of rural extension, could also increase
the adoption of irrigation systems, having a two-fold effect on farm technical efficiency.
Another key public policy that might increase adoption of irrigation systems is the provision
of rural credit, which decrease the financial burden of adoption.
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Table A1. Estimation of the selection equation (Probit) for irrigation adoption, after balancing the sample.

Variable Marginal Effect
(dy/dx) Standard-Error Estat. Z p-Value

Gender 0.00206 0.0003690 5.58 0.0001
Age 0.00077 0.0000480 15.97 0.0001

Age2 −7.43 × 10−6 0.0000005 −16.37 0.0001
Read and write −0.01132 0.0007554 −14.99 0.0001

Do not read and write −0.02243 0.0007223 −31.06 0.0001
Literate −0.01635 0.0008422 −19.41 0.0001

Incomplete elementary −0.00668 0.0006614 −10.1 0.0001
Complete Elementary 0.00315 0.0007123 4.43 0.0001

Agric. Technician 0.00956 0.0010204 9.37 0.0001
High School 0.00586 0.0007204 8.14 0.0001

Exp_1 0.00519 0.0007868 6.6 0.0001
Exp_1to5 0.00661 0.0003350 19.73 0.0001
Exp_5to10 0.00277 0.0003199 8.67 0.0001

Private Extension −0.00856 0.0003608 −23.72 0.0001
Governmental Extension 0.01973 0.0003453 57.14 0.0001

Co-op Membership −0.00795 0.0002336 −34.05 0.0001
Television 0.00561 0.0002690 20.84 0.0001
Telephone 0.01805 0.0002662 67.81 0.0001

Internet 0.01820 0.0007853 23.17 0.0001
Energy 0.03873 0.0003172 122.12 0.0001

Financing −0.00883 0.0002826 −31.23 0.0001
Qualif. 0.01529 0.0004906 31.17 0.0001
Urban −0.00293 0.0003558 −8.25 0.0001

Agr. Practice 0.00186 0.0002423 7.67 0.0001
Water Resource 0.03337 0.0003220 103.63 0.0001
Agrochemicals 0.04416 0.0002558 172.61 0.0001

Soil pH 0.02455 0.0003287 74.68 0.0001
Fertilizers 0.09043 0.0002928 308.81 0.0001

Value of Land −1.42 × 10−9 0.0000000 −16.66 0.0001
Agr. Family −0.00713 0.0003031 −23.51 0.0001

Owner −0.00319 0.0004382 −7.28 0.0001
Tenant 0.00736 0.0006383 11.53 0.0001
Partner −0.00113 0.0007716 −1.46 0.145

Summer precipitation −0.00024 0.0000031 −78.41 0.0001
Winter precipitation −0.00038 0.0000056 −68.87 0.0001

Summer temperature −0.00560 0.0001974 −28.39 0.0001
Winter temperature 0.00473 0.0001185 39.91 0.0001

Summer Prec. Stand. Dev. 0.00022 0.0000062 35.91 0.0001
Winter Prec. Stand. Dev. −0.00045 0.0000101 −43.91 0.0001

Summer Temp. Stand. Dev. 0.01652 0.0004981 33.16 0.0001
Winter Temp. Stand. Dev. −0.06200 0.0006704 −92.48 0.0001

N◦ Obs. 4,259,865
Log Likelihood −798,547.93

Chi2 389230.58 0.0001
Pseudo R2 0.196

Source: Research results.
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