UFRRJ INSTITUTO DE TECNOLOGIA CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA TECNOLOGIA QUÍMICA

DISSERTAÇÃO

AVALIAÇÃO DE CORRELAÇÕES PARA DETERMINAÇÃO DE PARÂMETROS DE ESCOAMENTO DE PASTA DE CIMENTO

DEIVÍDSON SILVEIRA DOS SANTOS

2013

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE TECNOLOGIA CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

AVALIAÇÃO DE CORRELAÇÕES PARA DETERMINAÇÃO DE PARÂMETROS DE ESCOAMENTO DE PASTA DE CIMENTO

DEIVÍDSON SILVEIRA DOS SANTOS

Sob a Orientação de Cláudia Miriam Scheid

E Co-orientação de Luís Américo Calçada

> Dissertação submetida como requisito parcial para a obtenção do grau de **Mestre em Ciências** em Engenharia Química, Área de Concentração em Tecnologia Química.

Seropédica, RJ Agosto de 2013

UFRRJ / Biblioteca Central / Divisão de Processamentos Técnicos

622.3381 S237a Santos, Deivídson Silveira dos, 1982-Т Avaliação de correlações para determinação de parâmetros de escoamento de pasta de cimento / Deivídson Silveira dos Santos - 2013. 137 f. : il. Orientador: Cláudia Miriam Scheid. Dissertação (mestrado) - Universidade Federal Rural do Rio de Janeiro, Curso de Pós-Graduação em Engenharia Química. Bibliografia: f. 3-22. 1. Poços de petróleo - Perfuração -Teses. 2. Poços de petróleo - Cimentação -Teses. 3. Cimento - Teses. 4. Vedação (Tecnologia) - Teses. I. Scheid, Cláudia Miriam, 1970-. II. Universidade Federal Rural do Rio de Janeiro. Curso de Pós-Graduação em Engenharia Química. III. Título.

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE TECNOLOGIA CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

DEIVÍDSON SILVEIRA DOS SANTOS

Dissertação submetida como requisito parcial para a obtenção do grau de <u>Mestre em Ciências</u>, no Curso de Pós-Graduação em Engenharia Química, área de Concentração em Tecnologia Química.

DISSERTAÇÃO APROVADA EM __/_/____

Cláudia Miriam Scheid, D. Sc., DEQ/UFRRJ (Presidente)

Andréa Lúcia Teixeira Charbel, D. Sc., DEQ/UFMG

Leonardo Duarte Batista da Silva, D. Sc., DE/UFRRJ

Aos meus pais e irmãos que sempre estiveram, desde minha infância, refletindo seus sonhos sobre os meus.

Agradecimentos

Bem antes de entrar nos *halls* científicos, esta dissertação pairou pelos campos da admiração e do respeito. Admiração a uma profissional, que exerceu seu papel com excelência durante o tempo que estive sob sua orientação. Falando em tempo, começou na primeira semana de aula da graduação e, infelizmente, finda com este projeto. Respeito às orientações, pois sabia que eram de elevado valor. Agradeço à professora Cláudia Miriam Scheid por ter aceitado o papel de minha orientadora, não só na realização deste trabalho, mas em toda minha vida acadêmica. E a coorientação do professor Luís Américo Calçada, que contribuiu bastante e sempre se mostrou disponível.

Agradeço a meus pais Maria José e Agnaldo; irmãos Robinho, Núbia, Dél e Rico; primos Joyce, Lane e Jeferson; tios Dina e Kute e tia do coração dona Josefina, além de todos os sobrinhos. Dificilmente, sem o pensamento positivo deles, eu estaria aqui!

Ao meu grande amigo Cláudio (Neguinho). Obrigado pela força e pelo companheirismo!

Agradeço aos meus amigos espirituais, ajudando-me na busca do equilíbrio e mostrandome de forma sutil como me tornar uma pessoa melhor, entendendo os momentos de fraqueza e impulsionando-me a prosseguir, sempre. E a todos os amigos da casa Espírita Paulo de Tarso, que são muitos. Como representante de todos, ao professor Maurício Mancini, os ensinamentos espiritas ficam mais fácies de serem assimilados quando postos de forma clara. Ele é Mestre nesta arte!

A realização deste trabalho não seria tão descontraída se não fosse a presença de Eduardo, Edilson e Carol, com suas risadas. Muito obrigado por fazer parte da equipe cimentação e termos realizado experimentos tão risonhos!

Durante o mestrado estudei com amigos que marcaram: Núbia, Bia, João, Euan, Sérgio, Alda, Mauro, Vanessa, Teo, Victor, Luiz, Juliana, Allan,... Agradeço a todos.

Alguns, não sei como, nos identificamos, levamos para casa, vamos para o bar, mesmo não bebendo, choramos mágoas e partilhamos emoções: Ciro, Fernando, Phernendo, Rodrigo, Leandro (Lelê), Cris, Guilherme, Gisele (Onça), Juliana, Fernanda, Fabi e Leandro (mais que um amigo um irmão). Obrigado a todos!

Aos meus amigos da antiga: Ivis, Joilson, Michael, Gilmar, Everton, Naiara, Ivanete, Delmaci, Katiane, Nádia, Paulo, Elisa, Tainá... Muito obrigado por sempre me desejarem sucesso! Ao CENPES/PETROBRAS e ao seu corpo técnico.

E a Universidade Federal Rural do Rio de Janeiro, demais professores e funcionários.

Um dia a verdade prometida imperará e a partir deste dia o caos que ronda a razão, tornando difuso o estado de felicidade, desaparecerá. E nesse dia, a felicidade infinitará, pois viveremos em eterna comunhão. Nós, Deus e a Ciência.

RESUMO

SANTOS, Deivídson Silveira dos. **Avaliação de Correlações para Determinação de Parâmetros de Escoamento de Pasta de Cimento.** 2013. 113p. Dissertação (Mestrado em Engenharia Química, Tecnologia Química). Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2013.

No processo de perfuração de pocos de petróleo a aplicação de fluidos é feita em todos os estágios da formação do poço. Lubrificar a broca, controlar a pressão no poço, retirar cascalhos etc. são algumas funções do fluido de perfuração na etapa de perfuração. O uso da pasta de cimento por sua vez tem a finalidade de promover a vedação hidráulica e isolar as rochas atravessadas permitindo que continue a perfuração com segurança. Este trabalho é resultado de uma linha de pesquisa que estuda o escoamento da pasta de cimento e tem por objetivo avaliar as correlações encontradas na literatura para a previsão de perda de carga no escoamento da pasta e fazer um estudo estatístico das equações utilizadas no processo de cimentação. O trabalho está dividido em duas partes distintas. Na primeira serão avaliadas as características do escoamento de uma pasta de cimento leve contendo microesferas. Na segunda etapa, é realizado o estudo estatístico das simulações reunindo os dados obtidos neste trabalho com os determinados por Paraíso (2011) no estudo do escoamento de pastas ditas pesadas e também de pastas médias estudadas no Laboratório de Escoamento de Fluidos, UFRRJ. Para a obtenção dos dados experimentais foram realizados ensaios de perda de carga nas três pastas de cimento com concentrações de sólidos que alterava a fluidez das mesmas e eram utilizadas na operação de cimentação de pocos de petróleo. As concentrações foram fornecidas pelo CENPES/PETROBRÁS. Para desenvolver o estudo proposto foi construída uma unidade piloto para o escoamento das pastas. A unidade possuía um sistema que operava em circuito fechado, era composta de tubos de ferro galvanizado e uma bomba de deslocamento positivo do tipo helicoidal de 25HP de potência da marca GEREMIAS (WEATHERFORD). Os parâmetros reológicos foram obtidos com o viscosímetro FANN 35A. Os escoamentos das pastas foram feitos em tubos de ferro galvanizados com quatro geometrias diferentes: circular 1", anular I (2" e 1 1/2"), anular II (1 1/2" e 1") e anular III (1 1/4" e 3/4") e em três temperaturas distintas: 15, 25 e 60°C. Foram analisadas três equações para o modelo reológico, três equações para o diâmetro hidráulico, nove correlações para o fator de atrito e cinco equações para o Reynolds crítico. Obtendo os dados nos regimes laminar, de transição e turbulento. O modelo reológico de Herschel-Buckley, a equação de diâmetro hidráulico DH2 e a correlação de Ellis e George (1977) obtiveram os melhores resultados para as três pastas. As equações de Jonhson (1959) e de Mishra e Tripathi (1971) mostraram-se mais eficientes nos três casos.

Palavras chave: Cimentação; perda de carga, pasta de cimento

ABSTRACT

SANTOS, Deivídson Silveira dos. **Avaliação de Correlações para Determinação de Parâmetros de Escoamento de Pasta de Cimento.** 2013. 113p. Dissertação (Mestrado em Engenharia Química, Tecnologia Química). Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2013.

During the well construction process, fluids are used in all stages of the well formation. The lubrication of the drill bit, the well pressure control, removal of cuttings, amongst others, are some functions of the drilling fluids in the drilling process. The use of the cement slurry in its turn is intended to promote the hydraulic seal and isolate the rock traversed, allowing a reliably drilling operation. This work is the result of a line of research that studies the flow of cement paste and aims to assess the correlations found in the literature for the prediction of pressure drop in the flow of the folder. Moreover, a statistical study of the equations used in the flow of cement slurries used in the cementing process was made. The work is divided into two distinct parts. In the first was evaluated the flow characteristics of a lightweight cement slurry containing microspheres. The second stage is performed the statistical analysis of simulations gathering the data obtained in this work with those determined for Paraíso (2011), in studying the flow said heavy folders, folders and also medium, studied at the Laboratório de Escoamento de Fluidos, UFRRJ. To obtain the experimental tests were performed load loss in the three cement pastes with solids concentrations that altered the flow of the same and were used in the cementing operation of oil wells. The slurries formulations were provided by CENPES / PETROBRAS. To develop the proposed study, a flow loop was built for the slurries' flow. This experimental flow loop consists of a system operating in a closed circuit, 25HP composed of galvanized iron tubes. helical pump of а (GEREMIAS/WEATHERFORD), and other equipment. The experimental sections were composed of a circular tube 1" in diameter and three concentric annulars with the following outer to inner diameter ratios: Annular I (2" - 1 1/2"), Annular II (1 1/2" - 1"), and Annular III $(1 \frac{1}{4}) - \frac{3}{4})$. The experiments were made at three different temperatures: 15, 25, and 60°C. The rheological data were obtained in a FANN-35A viscometer. We analyzed three rheological models, three hydraulic diameter correlations, nine friction factor correlations, and five critical Reynolds equations. We obtained data of the laminar, transitional and turbulent flow. The rheological model of Herschel-Buckley, the hydraulic diameter correlation DH2, and the Ellis and George (1977) correlation obtained the best results. The equations Johnson (1959) and Mishra and Tripathi (1971) proved to be more efficient in all three cases.

Key words: Cementation, loss of cargo, cement slurry

LISTA DE TABELAS

Tabela 1: Dados relativos de um saco de cimento (CAMPOS et. al., 2002)
Tabela 2: Arranjo ds anulares concêntricos (PARAÍSO, 2011)25
Tabela 3: Comprimento de entrada proposto por Dodge & Metzer (1959) e Fox et. al. (2004)
Tabela 4: Coeficiente de correlação dos modelos reológicos power law, Bingham e Herschel-
Buckley nas temperaturas de 15, 25 e 60°C. Pasta 3
Tabela 5: Parâmetros reológicos médios n (índice de comportamento), k (índice de
consistência), LE (limite de escoamento) e VP (viscosidade plástica) por temperatura dos
modelos de <i>power law</i> , Bingham e Herschel-Buckley nas temperaturas de 15, 25 e 60°C.
Pasta 3
Tabela 6: Erros percentuais absolutos para as equações de Reynolds crítico para dos modelos
de <i>power law</i> , Bingham e Herschel-Buckley na temperatura de 15°C. Pasta 343
Tabela 7: Erros percentuais absolutos para as equações de Reynolds crítico para dos modelos
de <i>power law</i> , Bingham e Herschel-Buckley na temperatura de 25°C. Pasta 343
Tabela 8: Erros percentuais absolutos para as equações de Reynolds crítico para dos modelos
de <i>power law</i> , Bingham e Herschel-Buckley na temperatura de 60°C. Pasta 344
Tabela 9: Erros percentuais médios absolutos dos diâmetros hidráulicos para o modelo
reológicos de power law, Bingham e Herschel-Buckley para o escoamento da pasta 3.47
Tabela 10: Erros percentuais médios absolutos das correlações de fator de atrito utilizando o
modelo reológicos de power law, Bingham e Herschel-Buckley no escoamento da pasta
3 na temperatura de 15°C53
Tabela 11: Erros percentuais médios absolutos das correlações de fator de atrito utilizando o
modelo reológicos de power law, Bingham e Herschel-Buckley no escoamento da pasta
3 na temperatura de 25°C54
Tabela 12: Erros percentuais médios absolutos das correlações de fator de atrito utilizando o
modelo reológicos de power law, Bingham e Herschel-Buckley no escoamento da pasta
3 na temperatura de 60°C55
Tabela 13: Tabela 16: Dados de coeficiente de correlação, R ² , para os modelos relógicos
power law, Bingham e Herschel-Buckley nas temperaturas de 15, 25 e 60°C e nas
geometrias circular e anulares, para pastas de cimento 1, 2 e 3

Tabela 14: Erros p	vercentuais médios	absolutos dos	diâmetros	hidráulicos pa	ara o modelo de	
Herschel-Buc	ckley. Pastas 1, 2 e	3				59

Tabela 16: Erros percentuais para o Reynolds crítico para o modelo de Herschel-Buckley para geometrias circular e anulares com diâmetro hidráulico DH2 e nas temperaturas 15, 25 e Tabela 17: Dados experimentais para geometria circular no escoamento da pasta 1 a 15°C...71 Tabela 18: Dados experimentais para geometria circular no escoamento da pasta 1 a 25°C...72 Tabela 19: Dados experimentais para geometria circular no escoamento da pasta 1 a 60°C...73 Tabela 20: Dados experimentais para geometria anular I no escoamento da pasta 1 a 15°C. .74 Tabela 21: Dados experimentais para geometria anular I no escoamento da pasta 1 a 25°C. .75 Tabela 22: Dados experimentais para geometria anular I no escoamento da pasta 1 a 60°C. .76 Tabela 23: Dados experimentais para geometria anular II no escoamento da pasta 1 a 15°C. 77 Tabela 24: Dados experimentais para geometria anular II no escoamento da pasta 1 a 25°C. 78 Tabela 25: Dados experimentais para geometria anular II no escoamento da pasta 1 a 60°C. 79 Tabela 26: Dados experimentais para geometria anular III no escoamento da pasta 1 a 15°C. Tabela 27: Dados experimentais para geometria anular III no escoamento da pasta 1 a 25°C. Tabela 28: Dados experimentais para geometria anular III no escoamento da pasta 1 a 60°C. Tabela 29: Dados experimentais para geometria circular no escoamento da pasta 2 a 15°C...83 Tabela 30: Dados experimentais para geometria circular no escoamento da pasta 2 a 25°C...84 Tabela 31: Dados experimentais para geometria circular no escoamento da pasta 2 a 60°C...85 Tabela 32: Dados experimentais para geometria anular I no escoamento da pasta 2 a 15°C. .86 Tabela 33: Dados experimentais para geometria anular I no escoamento da pasta 2 a 25°C. .87 Tabela 34: Dados experimentais para geometria anular I no escoamento da pasta 2 a 60°C. .88 Tabela 35: Dados experimentais para geometria anular II no escoamento da pasta 2 a 15°C. 89 Tabela 36: Dados experimentais para geometria anular II no escoamento da pasta 2 a 25°C. 90

Tabela 37: Dados experimentais para geometria anular II no escoamento da pasta 2 a 60°C. 91

Tabela 38: Dados experimentais para geometria anular III no escoamento da pasta 2 a 15°C.
Tabela 39: Dados experimentais para geometria anular III no escoamento da pasta 2 a 25°C.
Tabela 40: Dados experimentais para geometria anular III no escoamento da pasta 2 a 60°C.
Tabela 41: Dados reológicos da pasta 2. 95
Tabela 42: Erro percentual médio absoluto para as equações de diâmetro hidráulico utilizadas
no escoamento da pasta 296
Tabela 43: Erro percentual médio absoluto para as equações de Reynolds crítico utilizadas no
escoamento da pasta 2 na temperatura de 15°C97
Tabela 44: Erro percentual médio absoluto para as equações de Reynolds crítico utilizadas no
escoamento da pasta 2 na temperatura de 25°C97
Tabela 45: Erro percentual médio absoluto para as equações de Reynolds crítico utilizadas no
escoamento da pasta 2 na temperatura de 60°C
Tabela 46: Erro percentual médio absoluto para as equações de fator de atrito utilizadas no
escoamento da pasta 2 na temperatura de 15°C99
Tabela 47: Erro percentual médio absoluto para as equações de fator de atrito utilizadas no
escoamento da pasta 2 na temperatura de 25°C100
Tabela 48: Erro percentual médio absoluto para as equações de fator de atrito utilizadas no
escoamento da pasta 2 na temperatura de 25°C101
Tabela 49: Dados experimentais para geometria circular no escoamento da pasta 3 a 15°C. 102
Tabela 50: Dados experimentais para geometria circular no escoamento da pasta 3 a 25°C. 103
Tabela 51: Dados experimentais para geometria circular no escoamento da pasta 3 a 60°C. 104
Tabela 52: Dados experimentais para geometria anular I no escoamento da pasta 3 a 15°C.105
Tabela 53: Dados experimentais para geometria anular I no escoamento da pasta 3 a 25°C.106
Tabela 54: Dados experimentais para geometria anular I no escoamento da pasta 3 a 60°C. 107
Tabela 55: Dados experimentais para geometria anular II no escoamento da pasta 3 a 15°C.
Tabela 56: Dados experimentais para geometria anular II no escoamento da pasta 3 a 25°C.
Tabela 57: Dados experimentais para geometria anular II no escoamento da pasta 3 a 60°C.
110

abela 58: Dados experimentais para geometria anular III no escoamento da pasta 3 a 15°C.
abela 59: Dados experimentais para geometria anular III no escoamento da pasta 3 a 25°C.
abela 60: Dados experimentais para geometria anular III no escoamento da pasta 3 a 60°C.

LISTA DE QUADROS

Quadro 1: Propriedades requeridas pela pasta de cimento em idade recente e após cura
durante longos períodos de tempo (CAMPOS et. al., 2002)8
Quadro 2: Equações de Reynolds crítico encontradas na literatura (BRAGA, 2009)16
Quadro 3: Equações para o cálculo de fator de atrito no regime laminar (BRAGA, 2009)19
Quadro 4: Equações para o cálculo de fator de atrito no regime turbulento (BRAGA, 2009).20
Quadro 5: Incertezas das variáveis experimentais (PARAÍSO, 2011)35
Quadro 6: Incertezas estimadas dos parâmetros d modelo reológico Bingham
Quadro 7: Incertezas médias percentuais das variáveis calculadas (PARAÍSO, 2011)35
Quadro 8: Propagação das incertezas experimentais no cálculo de fator de atrito. Obtido de
Paraíso (2011)
Quadro 9: Propagação das incertezas experimentais no $\Delta P_{Calc.}$. Obtido de Paraíso (2011)36

LISTA DE FIGURAS

Figura 1: Desenho esquemático das fases de cimentação de um poço de petróleo (MIRAN	DA,
2008)	5
Figura 2: (a) Microesferas de cerâmicas; (b) Micrografia obtida por microscopia eletrônica	a de
varredura aumentada 250 vezes (MIRANDA, 2008)	9
Figura 3: Classificações dos fluidos	10
Figura 4: Desenvolvimento de perfil laminar permanente de velocidade para um fluido	
contido entre duas placas. Adaptado de Bird et. al. (2004)	10
Figura 5: Fluidos não newtonianos dependentes do tempo	11
Figura 6: Curva de escoamento de fluidos independentes do tempo de cisalhamento	12
Figura 7: Caso 1 – região de transição bem delineada.	15
Figura 8: Caso 2 – região de transição não definida	15
Figura 9: Foto da unidade de simulação de escoamento de fluidos (USEF)	22
Figura 10: Esquema da unidade de escoamento de pasta	23
Figura 11: Bomba helicoidal de 25HP e 12 kgf.cm ⁻² de pressão de descarga	23
Figura 12: Foto do tanque da unidade	24
Figura 13: Desenho com cotas em milímetros do tanque de mistura	24
Figura 14: Foto de <i>chiller</i> da unidade experimental	25
Figura 15: Tubos que compunham os trechos experimentais. (a) tubo interno; (b) suportes	do
tubo interno e (c) conector para tomada de pressão do trecho experimental	26
Figura 16: Foto do medidor de vazão e densidade coriollis da unidade	27
Figura 17: Imagem de transdutor de pressão diferencial com selo remoto	27
Figura 18: Misturador de sólidos em forma de Y	28
Figura 19: (a) Viscosímetro FANN 35 A. (b) Conjunto banho termostático, viscosímetro	
FANN 35A e copo encamisado	28
Figura 20: Balança de lama Campos (2006)	29
Figura 21: Consistômetro atmosférico Chandler Engineering, modelo 1200	30
Figura 22: Pasta de cimento sendo homogeneizada no tanque da unidade experimental	30
Figura 23: Conjunto agitador eletromagnético e peneira granulométrica.	31
Figura 24: Histograma granulométrico da microesfera cerâmica.	31
Figura 25: Fluxograma da metodologia do teste das pastas de cimento	33

Figura 26: Gráfico Reynolds versus fator de atrito da calibração da unidade experimental na
geometria circular
Figura 27: Gráfico de diferencial de pressão (ΔP) versus vazão de escoamento (Q), geometria
circular40
Figura 28: Gráfico de diferencial de pressão (ΔP) versus vazão de escoamento (Q), geometria
anular I40
Figura 29: Gráfico de diferencial de pressão (ΔP) versus vazão de escoamento (Q), geometria
anular II41
Figura 30: Gráfico de diferencial de pressão (ΔP) versus vazão de escoamento (Q), geometria
anular III
Figura 31: Análise das equações de diâmetro hidráulico. Escoamento da pasta 3 na geometria
anular I aplicando o modelo de Bingham a 15°C45
Figura 32: Análise das equações de diâmetro hidráulico. Escoamento da pasta 3 na geometria
anular II aplicando o modelo de <i>power law</i> a 60°C45
Figura 33: Análise das equações de diâmetro hidráulico. Escoamento da pasta 3 na geometria
anular III anlicando o modelo Herschel-Buckley a 25°C 46
undru III upheunes o modelo Hersener Duekiej u 25 Ommennen in
Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na
Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>
 Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo <i>power law</i>

Figura 42: Percentual de pontos com erros percentuais médios absolutos menores que 25%
para as equações de diâmetro hidráulico60
Figura 43: Percentual de pontos com menores valores de erros percentuais médios absolutos
para a equação de diâmetro hidráulico60
Figura 44: Percentual de pontos com erros percentuais médios absolutos menores que 25%
para as correlações de fator de atrito63
Figura 45: Percentual de pontos com menores erros percentuais médios absolutos das
correlações de fator de atrito63
Figura 46: Percentual de pontos com erros percentuais médios absolutos menores que 25%
para as equações de Reynolds crítico65
Figura 47: Percentual de pontos com menores erros percentuais médios absolutos das
equações de Reynolds crítico65
Figura 48: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular
no escoamento da pasta 1 a 15°C71
Figura 49: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular
no escoamento da pasta 1 a 25°C72
Figura 50: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular
no escoamento da pasta 1 a 60°C73
Figura 51: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I
no escoamento da pasta 1 a 15°C74
Figura 52: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I
no escoamento da pasta 1 a 25°C75
Figura 53: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I
no escoamento da pasta 1 a 60°C76
Figura 54: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 1 a 15°C77
Figura 55: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 1 a 25°C
Figura 56: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 1 a 60°C79
Figura 57: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 1 a 15°C80

Figura 58: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
III no escoamento da pasta 1 a 25°C81
Figura 59: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
III no escoamento da pasta 1 a 60°C82
Figura 60: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular
no escoamento da pasta 2 a 15°C83
Figura 61: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular
no escoamento da pasta 2 a 25°C84
Figura 62: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular
no escoamento da pasta 2 a 60°C85
Figura 63: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I
no escoamento da pasta 2 a 15°C86
Figura 64: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I
no escoamento da pasta 2 a 25°C87
Figura 65: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I
no escoamento da pasta 2 a 60°C88
Figura 66: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 2 a 15°C89
Figura 67: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 2 a 25°C90
Figura 68: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 2 a 60°C91
Figura 69: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 2 a 15°C92
Figura 70: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
III no escoamento da pasta 2 a 25°C93
Figura 71: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
III no escoamento da pasta 2 a 60°C94
Figura 72: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular
no escoamento da pasta 3 a 25°C103
Figura 73: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular
no escoamento da pasta 3 a 60°C104

Figura 74: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I
no escoamento da pasta 3 a 15°C
Figura 75: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I
no escoamento da pasta 3 a 25°C100
Figura 76: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 3 a 15°C108
Figura 77: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
II no escoamento da pasta 3 a 60°C110
Figura 78: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
III no escoamento da pasta 3 a 15°C
Figura 79: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular
III no escoamento da pasta 3 a 25°C112

LISTA DE ABREVIAÇÕES E SÍMBOLOS

A, B, C	Parâmetro recalculado a partir da equação de Ellis e George
D	Diâmetro da tubulação (m)
Def	Diâmetro efetivo do escoamento (m)
DH	Diâmetro hidráulico (m)
D_1	Diâmetro do tubo interno (m)
D_2	Diâmetro do tubo externo (m)
F	Força exercida pela placa no fluido (N)
f	Fator de atrito predito por Fanning
\mathbf{f}_{calc}	Fator de atrito calculado
f _{exp}	Fator de atrito experimental
f _D	Fator de atrito de Darcy
g	Aceleração da gravidade $(m.s^{-2})$
G	fator de correção do diâmetro hidráulico (m)
h _t	Somatório de todas as perdas de cargas geradas no tubo (m)
hs	Perda de carga ocasionada por acidentes presentes na tubulação (m)
h _d	Perda de carga provocadas pelo atrito na parede do tubo reto (m)
He	Número de Hedstrom
H_{f}	Energia fornecida ao sistema
H _r	Energia retirada d sistema
k	Parâmetro do modelo <i>power law</i> (índice de consistência) (kg.m ⁻¹ .s ⁿ⁻¹)
Κ	Coeficiente de perda de carga localizada
L	Comprimento da seção reta (m)
LE	Limite de escoamento (kg.m ^{-1} .s ^{-2})
n	Parâmetro do modelo power-law (índice de comportamento)
Р	Pressão no interior do tubo $(kg.m^{-1}.s^{-2})$
Q	Vazão volumétrica (m ³ .s ⁻¹)
Re	Número de Reynolds
Re _c	Número de Reynolds crítico
Re _{c calc}	Número de Reynolds crítico calculado pela correlação
Re _{c exp}	Número de Reynolds crítico experimental
Re _{cN}	Número de Reynolds crítico Newtoniano
R _H	Raio hidráulico (m)
ν	Velocidade do fluido (m.s ⁻¹)
$\langle v \rangle$	Velocidade média do fluido (m.s ⁻¹)
Vc	Velocidade crítica do fluido (m.s ⁻¹)
VP	Viscosidade plástica (kg.m.s ⁻¹)
Xc	Parâmetro de Hanks
Y	Distancia entre as placas (m)
Z	Alturas geométricas (cotas) (m)

Letras gregas

β	Razão entre os diâmetros interno e externo
3	Rugosidade relativa do tubo
γ	Taxa de deformação (s^{-1})
μ	Viscosidade do fluido (kg.m ⁻¹ .s ⁻¹)

μ_{ap}	Viscosidade aparente (kg.m ⁻¹ .s ⁻¹)
ρ	Massa específica do fluido (kg.m ⁻³)
τ	Tensão cisalhante (kg.m ⁻¹ .s ⁻²)
$\tau_{\rm w}$	Tensão cisalhante na parede (kg.m ⁻¹ .s ⁻²)
ΔP	Queda de pressão (Pa)
ΔQ	Variação de vazão volumétrica (m ³ .s ⁻¹)
ΔL	Comprimento da seção de teste (m)
ΔP_{calc}	Perda de carga calculada (Pa)
ΔP_{exp}	Perda de carga experimental (Pa)

SUMÁRIO

1. INTR	ODUÇÃO	.1
2. REVI	ISÃO BIBLIOGRÁFICA	.3
2.1. Per	furação	.3
2.2. Cin	nentação	.3
2.2.1.	Histórico da cimentação	.3
2.2.2.	Revestimento	.4
2.2.3.	Tipos de cimentação	.5
2.3. Cin	nento	.6
2.4. Pas	ta de Cimento	.6
2.4.1.	Tipos de pastas de cimento	.7
2.5. Mie	croesfera Cerâmica	.8
2.6. Adi	itivos	.9
2.7. Cla	ssificação dos Fluidos	.9
2.7.1.	Fluidos newtonianos	10
2.7.2.	Fluidos dependentes do tempo	11
2.7.3.	Fluidos independentes do tempo	12
2.7.4.	Fluidos viscoelásticos	12
2.8. Mo	delos Reológicos Para Fluidos não Newtonianos	12
2.8.1.	Modelo reológico da potência ou <i>power law</i>	12
2.8.2.	Modelo reológico Bingham	13
2.8.3.	Modelo reológico Herschel-Buckley	13
2.9. Reg	gime de Escoamento	13
2.9.1.	Determinação experimental do regime de escoamento	14
2.9.2.	Determinação da velocidade e do Reynolds crítico	15
2.10. E	Balanço de Energia	16

	2.11.	Determinação do Fator de Atrito	.17
	2.11.	1. Fluido newtoniano	.17
	2.11.2	2. Fluido não newtoniano	.18
	2.12.	Diâmetro Hidráulico	.21
3	MATE	ERIAIS E MÉTODOS	.22
	3.1 U	nidade Experimental	.22
	3.2 E	quipamentos Utilizados na Unidade Experimental	.23
	3.2.1	Bomba	.23
	3.2.2	Tanque	.24
	3.2.3	Refrigeração	.25
	3.2.4	Tubos	.25
	3.2.5	Medidor de vazão	.27
	3.2.6	Transdutor de pressão	.27
	3.3 E	quipamentos Utilizados nos Experimentos	.28
	3.3.1	Misturador de Sólidos	.28
	3.3.2	Viscosímetro FANN 35A	.28
	3.3.3	Balança de lama	.29
	3.3.4	Consistômetro	.29
	3.4 F	ormulação das Pastas	.30
	3.5 A	nálise Granulométrica da Microesfera	.31
	3.5.1	Preparo e Escoamento da Pasta 3	.32
	3.6 M	letodologia Utilizada para a Avaliação de Equações	.32
	3.6.1	Regime laminar	.32
	3.6.2	Regime turbulento	.34
	3.7 A	valiação das Incertezas	.34
4	4 RESULTADOS E DISCUSSÕES		
	4.1 C	alibração da Unidade Experimental	.37

4.2	Es	tudo da Pasta 3
4	.2.1	Reologia
4	.2.2	Regime de escoamento
4	.2.3	Reynolds crítico
4	.2.4	Diâmetro hidráulico45
4.3	Fa	tor de atrito48
4	.3.1	Análise de gráficos de correlações de fator de atrito
4	.3.2	Análise das tabelas de correlações de fator de atrito
4.4	Ar	nálises das Três Pastas56
4	.4.1	Modelo reológico
4	.4.2	Diâmetros hidráulicos
4	.4.3	Fator de atrito61
4	.4.4	Reynolds crítico
5.	CON	ICLUSÃO66
6.	RFE	RÊNCIAS BIBLIOGRÁFICAS67
7.	. SUGESTÕES PARA TRABALHS FUTUROS69	
8.	ANE	EXO70

1. INTRODUÇÃO

A importância do petróleo na sociedade moderna toma dimensões, em muito, inimagináveis. Pensando-se na economia, norteiam todas as nações, os países mais ricos economicamente são os que mais se utilizam. Pensando em tecnologia, o mundo volta-se cada vez mais para novas técnicas a serem aplicadas na sua extração, no refino e, dentre outras, na sua aplicabilidade. A sociedade encontra-se mergulhada em um oceano de produtos derivados do petróleo e quando se cogita a hipótese de extinguir em tal ano, surgem novos reservatórios que surpreendem de tão abundantes. Estudos relativos à extração dessa matéria prima vêm sendo desenvolvidos há décadas. O processo de perfuração de poços de petróleo é muito importante para estabelecer a qualidade do poço produtor e os estudos dos fluidos envolvidos têm aumentado. Dentre os fluidos utilizados, a pasta de cimento está presente. A cimentação de um poço de petróleo é fundamental para o bom funcionamento em toda vida útil do poço.

O escoamento de fluidos em qualquer geometria é marcado pela fricção do mesmo entre si e contra as paredes da tubulação que o contenha. Tal fenômeno gera a perda de energia dinâmica do fluido, que é denominada perda de carga. A perda de carga pode ser definida como a energia perdida pela unidade de peso do fluido quando este escoa. A avaliação da perda de carga no escoamento da pasta de cimento na etapa de cimentação do poço de petróleo é a motivação deste trabalho, sendo de grande importância por diminuir os custos energéticos otimizando o processo de escoamento.

O objetivo deste trabalho é avaliar correlações da literatura para previsões de perda de carga no escoamento da pasta de cimento na etapa de cimentação do poço de petróleo e fazer um estudo estatístico das equações utilizadas no processo de cimentação. Sendo assim realizados ensaios de perda de carga em três pastas de cimento com concentrações de sólidos que alterava a fluidez das pastas as quais foram separadas em baixas, média e de alta viscosidade. Foi construída uma unidade piloto para o escoamento da pasta. A unidade possuía um sistema que operava em circuito fechado, era composta de tubos de ferro galvanizado, uma bomba de deslocamento positivo do tipo helicoidal de 25HP de potência da marca GEREMIAS (WEATHERFORD), responsável pela circulação do fluido do tanque de armazenagem para todo o sistema com vazões de até 20m³.h⁻¹ e pressões de recalque da ordem de 12kgf.cm⁻². Paralelo ao ensaio de perda de carga na unidade, os parâmetros reológicos foram obtidos com viscosímetro FANN 35A.

A apresentação deste trabalho foi dividida em capítulos. O estudo literário encontra-se no capítulo 2 referente à Revisão Bibliográfica. Os detalhamentos dos materiais utilizados e dos métodos aplicados foram dispostos no capítulo 3, Materiais e Métodos. No capítulo 4, Resultados e Discussões, foram apresentados os dados obtidos dos estudos dos experimentais por meio de gráficos e tabelas, além das observações pertinentes. A Conclusão esta apresentada no capítulo 5 e as referências utilizadas para elaboração deste trabalho no capítulo 6, Referências Bibliográficas. Em anexo estão dispostos todos os dados para construção de tabelas e gráficos.

Este trabalho faz parte de um projeto formulado pela Petrobrás que avalia a perda de carga no escoamento de pastas de cimento. As formulações propostas foram de pastas utilizadas na operação de cimentação de poços de petróleo e foram fornecidas pelo CENPES/PETROBRAS. Foram avaliadas três pastas que possuíam composições distintas. A primeira pasta foi avaliada por Paraíso (2011), que com os dados experimentais analisou correlações para previsões de perda de carga. A segunda pasta foi estudada no Laboratório de Escoamento de Fluidos – UFRRJ e tem seus resultados apresentados no anexo desta dissertação. Os dados da primeira e segunda pasta foram apresentados no anexo.

O capítulo 4 referente aos Resultados e Discussões foi dividido em duas etapas. Na primeira foram realizadas análises do escoamento da terceira pasta de cimento que continha

em sua composição microesferas cerâmicas e com baixa concentração de água. Foi analisado primeiramente o comportamento reológico da pasta, em seguida o melhor diâmetro hidráulico que representavam as geometrias anulares, as equações de fator de atrito e por fim as equações de Reynolds crítico. A segunda etapa consistiu em fazer um estudo estatístico do escoamento das três pastas de cimento, sendo o objetivo apresentar o melhor modelo reológico, a melhor equação do diâmetro hidráulico e de Reynolds crítico e a melhor correlação de fator de atrito.

2. REVISÃO BIBLIOGRÁFICA

Nesta revisão serão abordados alguns aspectos técnicos do processo de cimentação, assim como da pasta de cimento e aditivos, e sua utilização no poço de petróleo. Serão abordados também a classificação dos fluidos e as equações utilizadas para caracterizar o escoamento dos fluidos e seus dados reológicos.

2.1. Perfuração

O petróleo, matéria prima da indústria petrolífera e petroquímica, é uma fonte de energia não renovável e de origem fóssil. Encontra-se na natureza nos poros das rochas conhecidas como rochas reservatórios situadas no subsolo a grandes profundidades. Sua formação iniciou-se, segundo algumas correntes científicas, com o soterramento e seguido processo de decomposição de matérias animais e vegetais gerando, assim, com o passar dos tempos, um óleo rico de hidrocarbonetos. Após sua formação nas rochas geradoras, o petróleo fez o processo de migração. No percurso da migração ao encontrar estruturas impermeáveis (armadilhas geológicas), ocorreu seu confinamento em uma rocha reservatório que originou a jazida de petróleo. Não encontrado uma armadilha, ocorre à exsudação do petróleo, onde aflora naturalmente na superfície terrestre (THOMAS *et. al.*, 2001).

O processo de perfuração de um poço de petróleo tem como meta chegar à jazida, que se encontra em grandes profundidades, possibilitando a extração do petróleo. Para tanto perfura-se o solo e logo em seguida cimenta-o. Na perfuração aplica-se peso e rotaciona-se a broca sobre o solo concomitantemente com a aplicação de fluidos. Após a perfuração de cada fase do poço ocorre a etapa de cimentação, que será detalhada a seguir (THOMAS *et. al.*, 2001).

2.2. Cimentação

A possibilidade de migração de fluidos entre as diversas zonas permeáveis atravessadas pelo poço é vetada com a cimentação, onde ao descer a coluna de revestimento forma-se uma região anular entre a tubulação de revestimento e as paredes do poço, esta região é preenchida com cimento. Neste processo, a pasta de cimento é bombeada através das tubulações do revestimento e ao endurecer o cimento fica fortemente aderido à superfície externa do revestimento e à parede do poço (THOMAS *et. al.*, 2001).

2.2.1. Histórico da cimentação

Campos *et. al.* (2001), ao discorrer sobre a cimentação de poços de petróleo, apresenta o histórico da cimentação dos poços de petróleo, a motivação para realizar este processo e a evolução sofrida durante o decorrer das décadas. A seguir foi apresentado a histórico feito por Campos *et. al.* (2001).

O primeiro poço a ser perfurado na era moderna data de 1859. O fluxo de água da formação para o poço foi a motivação para a inserção de cimento no poço. Em 1903, no campo de Lompoc na Califórnia foi registrada a primeira tentativa de cimentação de um poço. Nas cimentações iniciais, o método utilizado denominava-se por *dump bailer*, onde eram bombeados 50 sacos de cimento e esperavam-se 28 dias para o endurecimento.

Uma ligeira retrospectiva da evolução da cimentação remonta-se a 1910. Almond Perkins criou um novo método de inserção da pasta de cimento no poço, onde dois tampões metálicos eram montados no poço formando uma região anular por onde a pasta era bombeada. Tal método evitava a contaminação da pasta por água ou fluido de perfuração durante o bombeio. Em 1918, foi criada a Companhia de Perkins, primeira companhia de serviço especializado em cimentação de poços de petróleo, situada em Los Angeles. No ano seguinte, no norte da Califórnia foi criada a Cia de serviço Halliburton.

Em 1920 em Oklahoma a Halliburton realizou sua primeira cimentação fora da Califórnia, sendo marcada, visto que nesta operação o endurecimento durou apenas 10 dias.

Em 1922, o misturador com jatos, *Jet mixer*, foi patenteado por Erle P. Halliburton. Tal equipamento automatizou a mistura da pasta.

Em 1926, a Bransdall Oild Company, inseriu o colar e a sapata com válvula, acessórios importantes no processo de cimentação. No Golfo do México, em um poço costeiro, foi empregada a técnica que utilizou um lavador químico para a remoção do fluido de perfuração.

No ano de 1929, foi criado o primeiro laboratório de cimentação e no ano seguinte foram criados os centralizadores como técnica auxiliar para melhorar a eficiência da operação de cimentação.

Em 1935, foi usada a técnica *squeeze* com alta pressão, onde se podia fazer a correção da cimentação primária.

No ano de 1948, foi realizado o primeiro estudo efetivo sobre as técnicas de deslocamento de pasta e em 1952 foram utilizadas as técnicas para a cimentação de zonas em condições de baixa temperatura.

No ano de 1964, com a intenção de se obter uma resistência à compressão menor foram introduzidas pastas de cimento mais pesadas, ou seja, com menor concentração de água. Em 1975, foram realizados estudos mais completos para a utilização de água do mar em pastas de cimento obtendo bons resultados.

O estudo da pasta de cimento e o aperfeiçoamento das técnicas de injeção das mesmas no poço possibilitou a otimização do processo de cimentação. O primeiro poço cimentado, como exposto, levou 28 dias para a pasta endurecer. Até 1946 o ponto de pega foi reduzido para 72 horas, a partir de 1946 de 24 a 36 horas e hoje as pastas de cimento podem se manter fluidas por 4 horas em geral, garantindo seu bombeio em poços profundos, e em seguida endurece rapidamente, com isto as atividades do poço podem ser retomadas de 6 a 8 horas após a cimentação.

2.2.2. Revestimento

Na Figura 1 está representado esquematicamente um poço de petróleo. Foram perfuradas diversas fases (diâmetros diferentes) e descidos quatro tipos de revestimentos, os quais foram cimentados (MIRANDA, 2008). A seguir serão apresentados os tipos de revestimentos mais usados na perfuração (THOMAS *et. al.*, 2001).

Tipos de revestimentos

- 1- Revestimento condutor: dos quatro apresentados é o menos extenso descido no poço. Evita a erosão das camadas superficiais inconsolidadas. Pode ser ou não cimentado no mar, podendo ser simplesmente cavado, em alguns casos, no solo, sem a necessidade de cimentar;
- 2- Revestimento de superfície: segundo revestimento. Mantém a integridade do poço e previne a contaminação pelo fluido de perfuração de formações que contenham água doce, salmoura, óleo ou gás;
- 3- Revestimento intermediário: isola zonas fraturadas, as quais possuem pressões anormalmente baixas ou altas e apresentam perdas de circulação e
- 4- Revestimento de produção: também chamado de linear de produção isola as diferentes zonas abaixo e acima das zonas de interesse, zona de produção.

Figura 1: Desenho esquemático das fases de cimentação de um poço de petróleo (MIRANDA, 2008).

2.2.3. Tipos de cimentação

A perfuração de um poço de petróleo é marcada por características como, por exemplo, tipo de solo e formação geológica, que particularizam os processos de perfuração dos poços de petróleo. Contudo a cimentação inicial de um poço não é exatamente semelhante a uma correção posterior, pois as condições de injeção das pastas são diferentes, necessitando, assim, de conhecimentos geológicos, das características da pasta, das condições de injeção da pasta, dentre outros, para não ser preciso fazer correções. A indústria de petróleo classifica as cimentações em dois tipos gerais: cimentação primária e cimentação secundária, descritas a seguir (THOMAS *et. al.*, 2001).

Cimentação primária

A cimentação primária inicia-se com a descida da coluna de revestimento no poço. O papel da cimentação primária no processo é de vital importância por promover a vedação hidráulica impedindo a migração de fluidos por trás do revestimento (THOMAS *et. al.*, 2001). Contudo seus objetivos são promover aderência mecânica ao revestimento e a formação, isolar as formações atravessadas e proteger o revestimento contra corrosões e cargas dinâmicas decorrentes de operações em seu interior (CAMPOS *et. al*, 2002).

Cimentação secundária

A garantia da qualidade da cimentação primária é de vital importância para o ciclo da vida de um poço. Produção de fluidos indesejáveis, devido à proximidade de contato água/óleo ou gás/óleo, teste de avaliação das formações incorretas, prejuízo no controle dos reservatórios e operações de estimulação mal sucedidas, podendo levar a perda do poço, são consequências de uma vedação hidráulica ineficiente e para corrigi-la utiliza-se a etapa da cimentação secundária, na qual são feitas as correções necessárias da cimentação primária (THOMAS *et. al.*, 2001).

2.3. Cimento

O processo de fabricação e a composição química do cimento são padronizados pelo *American Petroleum Institute* (API). Nesta padronização o cimento é dividido em 8 classes que vão de A até G. As propriedades diferem-se quanto à:

- faixa de aplicação (temperatura e pressão);
- resistência inicial e retardamento;
- resistência ao ataque de sulfetos e
- resistência ao calor de hidratação.

O Cimento Portland CPP-Classe G, utilizado nas pastas de cimento para a cimentação de um poço de petróleo, segundo o API:

devem ser utilizados em operações básicas de cimentação de poços de petróleo de revestimentos de superfícies até profundidades de 2440 m (8000 pés). Podendo ser utilizado ainda com uma série de aditivos químicos como aceleradores e retardadores de modo a contemplar uma série de aplicações distintas a depender da profundidade e temperatura. Disponível nos tipos de moderados a altas resistências a sulfatos.

Segundo a Associação Brasileira de Normas Técnicas (ABNT), edição ABNT NBR 9831 de 2 de outubro de 2006 o Cimento Portland CPP-Classe G é definido como:

Cimento Portland destinado a perfuração de poços petrolíferos CPP-Classe G e CPP-Classe Especial: Aglutinante hidráulico obtido pela moagem de clinquer Portland, constituído, em sua maior parte, por silicatos de cálcio hidráulicos e que apresenta características especiais para uso em poços de petróleo assim como produzido. Na fabricação a única adição permitida é a de sulfato de cálcio (gesso) durante a moagem (ABNT, 2006).

Na Tabela 1 foram apresentadas as propriedades do cimento Portland Classe-G a granel que são utilizados na formulação das pastas de cimento aplicadas nas etapas de cimentação um poço de petróleo.

PROPRIEDADES	Saco Brasileiro	Saco Americano
Peso	50 kg	94 lb
Volume Aparente	33,1 dm ³	1 pé ³
Volume de Sólidos	15,92 dm ³	0,48 pé ³
Massa Específica	3,14 kg.dm ⁻³	195,83 lb.pé ⁻³
Densidade Relativa	3,14	3,14

Tabela 1: Dados relativos de um saco de cimento (CAMPOS et. al., 2002).

O cimento é manuseado a granel, com medições também em volume, tendo, assim, sua quantidade referida na unidade em pés cúbicos. A utilização de tal unidade também pode ser explicada pelo fato da grande publicação de dados no exterior empregá-la (CAMPOS *et. al.*, 2002).

2.4. Pasta de Cimento

Campos *et. al.*(2002) definiram a pasta de cimento como sendo uma mistura de cimento, água e aditivos com a finalidade de obter propriedades químicas e físicas específicas destinadas à operação de cimentação. São compostas por duas fases reativas, cimento (fase dispersa) e água da mistura (fase contínua). As propriedades da mistura resultante serão decorrentes da interação entre as duas fases. Sendo, a pasta de cimento, um sistema reativo

seu comportamento tem influência das três variáveis: tempo, pressão e temperatura. Estas atuam de forma combinada sobre as propriedades dos materiais. E além das variáveis a pasta de cimento depende também do processo de cura. Portanto, para utilizar a pasta de cimento em cada tipo de revestimento é preciso conhecer as seguintes características (THOMAS *et. al.*, 2001):

- profundida de vertical e medida;
- ângulo do poço em função da profundidade;
- tipo de revestimento (diâmetro interno e externo);
- diâmetro do poço;
- temperatura de circulação e estática;
- pressão de poros e de fratura;
- ➢ tipo de formação e
- presença ou não de gás na formação.

A massa específica da pasta de cimento deve ser projetada visando às pressões dos poros e de fatura da formação. A massa específica da pasta deve ser maior que a pressão correspondente à pressão de poros para impedir a invasão de fluidos da formação para o poço. E a massa específica deve ser menor que a pressão correspondente à pressão de fratura para evitar fratura da formação evitando invasão da pasta no interior da formação.

Cada operação de cimentação ditará as propriedades requeridas da pasta de cimento a ser empregada. Para uma dada operação a pasta de cimento deve:

- a. apresentar massa específica de acordo com os dados de pressão de poros e de fratura da formação;
- b. ser de fácil mistura e de fácil bombeio;
- c. apresentar propriedades reológicas apropriadas não só para deslocar eficientemente o fluido de perfuração presente no poço, que será substituído pela pasta, como também para evitar a fratura da formação pela perda de carga gerada durante o deslocamento da pasta;
- d. ser impermeável ao gás, caso presente;
- e. desenvolver resistência à compressão rapidamente após o término de seu deslocamento;
- f. desenvolver aderência nas interfaces formação/cimento/revestimento;
- g. apresentar baixa permeabilidade para evitar a migração de fluidos e gás pela pasta solidificada e
- h. apresentar baixo valor de perda de fluido no caso de formação permeável, para evitar a invasão de fluido da pasta para a formação.

2.4.1. Tipos de pastas de cimento

O projeto das pastas de cimento busca atender às exigências em três situações distintas: preparação, deslocamento e pós-colocação no anular. O Quadro 1 apresenta as propriedades requeridas para a pasta desde sua preparação, colocação no anular e após cura durante longos períodos de tempo (CAMPOS *et. al.*, 2002).

IDADE RECENTE:	APÓS LONGOS PERÍODOS DE TEMPO:	
PASTA DE CIMENTO	BAINHA DE CIMENTO	
Ambientalmente aceitável.	Ectável termicomente cob condiçãos de prossão	
Densidade desejada.	e temperatura	
Misturável nas condições ambientais.	e temperatura.	
Não apresente decantação de sólidos sob		
condições dinâmicas e estéticas.	Resista à presença de produtos químicos nas	
Água livre nula.	condições de fundo do poço.	
Tempo de espessamento desejado.]	
Filtrado desejado.	Possuam as propriedades mecânicas que	
Desenvolvimento de resistência a compressão	suportem as tensões das diversas operações de	
desejado.	superfície e proporcione o isolamento entre	
Preenchimento 100% do volume anular.	zonas portadoras de fluidos durante toda vida	
Posistância ao influxo de fluidos	do noco	

Quadro 1: Propriedades requeridas pela pasta de cimento em idade recente e após cura durante longos períodos de tempo (CAMPOS *et. al.*, 2002).

As propriedades requeridas para a pasta de cimento no estado fluido e após a solidificação dependem dos objetivos e das condições de cada operação de cimentação. A seguir serão apresentadas as classificações das pastas de cimento leves (CAMPOS *et. al.*, 2002).

- ✓ Pastas de cimento espumadas mistura nitrogênio ou ar à pasta. São extremamente leves (mínimo de 0,7 g.cm⁻³), possuem alta resistência, controle de migração de gás e de fluxo de água superficial e tenacidade maior que a de pastas convencionais. Contudo são de difícil operação em relação os das pastas convencionais e necessita de rigoroso controle na mistura da pasta ao nitrogênio ou ao ar para garantir que sejam misturados na proporção projetada e de forma homogênea;
- ✓ pastas estendidas com argila a pasta expande seu volume devido a presença da argila em sua composição, a bentonita é a argila mais utilizada, conferindo a pasta mais viscosidade, gel e suspensão de sólidos. A adição de argila á pasta necessita de um maior volume de água, porém não promove sua sedimentação;
- ✓ pastas estendidas com terra diatomácea são pastas leves devido a baixa densidade desse tipo de terra e pelo elevado volume de água requerido;
- ✓ pastas leves de compacidade otimizada são pastas que utilizam materiais leves com concentrações definidas com base na distribuição de partículas de sólidos constituintes. Imprimindo na pasta menor permeabilidade e maior resistência mecânica e química. Microesferas podem ser utilizadas nesses tipos de pastas, nesse caso não ocorre o problema de segregação.
- ✓ pastas com microesferas são utilizadas microesferas de vidro ou cerâmica oca. A massa específica pode atingir o mínimo de 1 g.cm⁻³. Para evitar problemas de segregação da microesfera na pasta, devido a sua baixa densidade, mistura-se a microesfera no líquido e depois adiciona os demais sólidos.

A pasta contendo microesfera é um dos casos de estudo deste trabalho.

2.5. Microesfera Cerâmica

Dentre as partículas leves utilizadas na confecção de pastas leves de cimento para poços de petróleo, as microesferas merecem destaque. Não suportam pressões hidrostáticas muito elevadas, portanto não podem ser utilizadas na confecção de pastas para cimentação de

poços profundos. E podem ser de vidro ou cerâmicas. De acordo com Nelson e Guillot (2006), estes materiais apresentam baixas massas específicas aparentes, normalmente em torno de 200 e 900 kg.m⁻³. A microesfera cerâmica também é denominada cenosfera e apresenta a sílica e a alumina como seus principais constituintes, Figura 2. Além disso, a distribuição do tamanho dos grãos da microesfera cerâmica varia entre 20 – 500 mm, a espessura de sua parede é cerca de 10% de seu raio e o gás em seu interior é uma mistura de CO_2 e N_2

Figura 2: (a) Microesferas de cerâmicas; (b) Micrografia obtida por microscopia eletrônica de varredura aumentada 250 vezes (MIRANDA, 2008).

2.6. Aditivos

Bezerra (2006) ressalta que para ocorrer o bombeio da pasta de cimento para o interior do poço, várias propriedades devem ser corrigidas, visto que dificilmente as operações de cimentação são realizadas com pastas preparadas apenas com cimento Portland e água. A correção das propriedades ocorre por meio de produtos que adicionados em pequena quantidade a concreto de cimento Portland modificam algumas de suas propriedades, no sentido de melhor adequá-las a determinadas condições. Tais produtos são conhecidos como aditivos. A seguir serão apresentadas as classes de aditivos usados para ajustar as propriedades das pastas.

- Acelerador de pega utilizado para reduzir o tempo de solidificação da pasta. É geralmente utilizado em operações em baixa temperatura;
- Rretardador de pega utilizado para retardar a solidificação da pasta de modo a permitir o bombeio de toda a pasta para a profundidade desejada sem que haja solidificação ou viscosificação durante o deslocamento da pasta no poço;
- dispersante utilizado para aumentar a fluidez da pasta;
- estentedor utilizado para reduzir a massa específica da pasta;
- adensante utilizado para aumentar a massa específica da pasta, consiste de material de alto valor de massa específica;
- controlador de filtrado utilizado para reduzir a perda de fluido da pasta de cimento para formações permeáveis e
- antiespumante utilizado para reduzir a formação de espuma nas pastas de cimento.

2.7. Classificação dos Fluidos

As pastas de cimento apresentam comportamento reológico de fluidos não newtonianos. Neste item foi feita uma breve discussão sobre o assunto.

Os fluidos podem ser divididos em duas classes: newtonianos e não newtonianos. Os newtonianos apresentam uma relação linear entre o valor da tensão de cisalhamento aplicada e a taxa de deformação resultante. No fluido não newtoniano existe uma relação não linear entre o valor de tensão de cisalhamento aplicada e a taxa de deformação e caso exista relação linear necessitam uma tensão inicial para realizar o escoamento (BIRD *et. al.*, 2004). Na Figura 3 estão representadas as classificações dos fluidos newtonianos e não newtonianos e quanto a dependência do tempo e da tensão de cisalhamento.

Figura 3: Classificações dos fluidos.

2.7.1. Fluidos newtonianos

Considerando um para de placas grandes paralelas, Figura 4, cada uma com área A e separadas por uma distância z, onde no espaço entre as placas encontra-se um fluido. Estando inicialmente em repouso no instante t=0 a placa inferior é posta em movimento na direção positivo de x a uma velocidade constante V. Com o passar do tempo é estabelecido um perfil linear e permanente de velocidade (BIRD *et. al.*, 2004).

Figura 4: Desenvolvimento de perfil laminar permanente de velocidade para um fluido contido entre duas placas. Adaptado de Bird *et. al.* (2004).

Ao atingir o estado final, escoamento permanente, o movimento da placa inferior é mantido por uma força F. Tal força pode ser expressa a partir da Equação 1.

$$\frac{F}{A} = \mu \frac{V}{z} \tag{1}$$

A força deve ser proporcional à área e a velocidade e inversamente proporcional à distância entre as placas. O termo, μ , encontrado na Equação 1, refere-se a constante de proporcionalidade, a qual é uma propriedade do fluido, denominada viscosidade dinâmica (BIRD *et. al.*, 2004).

Pela lei de Newton da viscosidade, Equação 2, a força de cisalhamento por unidade de área é proporcional ao negativo do gradiente de velocidade. A Equação 2(2 é usada em escoamentos de fluidos newtonianos e é conhecida como modelo de Newton da viscosidade.

$$\tau_{zx} = -\mu \frac{\mathrm{d}\mathbf{v}_x}{\mathrm{d}z} \tag{2}$$

em que τ_{zx} é a tensão, que é a força na direção x numa área unitária perpendicular a direção z, e é obtida ao substituir os termos da Equação 1(BIRD *et. al.*, 2004):

$$\frac{F}{A} \operatorname{por} \tau_{zx} \quad e$$
$$-\frac{\mathrm{d} v_x}{\mathrm{d} z} \operatorname{por} \frac{V}{z}.$$

2.7.2. Fluidos dependentes do tempo

Os fluidos dependentes do tempo, Figura 5, são fluidos nos quais a viscosidade varia quando expostos durante um tempo a taxa de cisalhamento constante, e se classificam em tixotrópicos (viscosidade aparente diminui com o tempo exposto a uma taxa de cisalhamento constante) e reopéticos (viscosidade aparente aumenta com o tempo exposto a uma taxa de cisalhamento constante). Os tixotrópicos adquirem um estado semi-rígido quando estão em repouso e voltam a adquirir um estado de fluidez quando estão novamente em movimento (BIRD *et. al.*, 2004). Os fluidos reopéticos à medida que a tensão de cisalhamento aumenta também aumenta a deformação e quando a tensão diminui a deformação também diminui, voltando então o fluido a sua viscosidade inicial. O contrário ocorre com as outras duas curvas que representam o fluido tixotrópico.

Figura 5: Fluidos não newtonianos dependentes do tempo.

2.7.3. Fluidos independentes do tempo

Os fluidos independentes do tempo, Figura 6, são fluidos nos quais a viscosidade aparente se mantém constante não dependendo do tempo exposto a certa taxa de cisalhamento fixa. Podem ser (MACHADO, 2002):

- pseudoplásticos: a viscosidade aparente diminui com o aumento da taxa de cisalhamento;
- dilatante: a viscosidade aparente aumenta com o aumento da taxa de cisalhamento;
- Herschel-Bulkley: possui uma tensão mínima de escoamento e a viscosidade aparente diminui com o aumento da taxa de cisalhamento;
- plástico de Bingham: possui uma tensão mínima de escoamento e apresenta relação linear entre o valor da tensão de cisalhamento aplicada e a taxa de deformação resultante e
- fluidos newtonianos: apresenta relação linear entre o valor da tensão de cisalhamento aplicada e a taxa de deformação resultante.

Figura 6: Curva de escoamento de fluidos independentes do tempo de cisalhamento.

2.7.4. Fluidos viscoelásticos

Os viscoelásticos são aqueles que apresentam uma componente viscosa e elástica simultaneamente. Possuem comportamento intermediário entre um fluido puramente viscoso, como a água, e um sólido elástico. Propriedades elásticas se referem a uma deformação reversível do fluido e propriedades viscosas se referem à deformação infinita da substância, são fluidos bem mais complexos de serem estudados (MACHADO, 2002).

2.8. Modelos Reológicos Para Fluidos não Newtonianos

Para representar os escoamentos de fluidos não newtonianos independentes do tempo são utilizados modelos que descrevam seu comportamento reológico. A seguir são apresentados alguns deles:

2.8.1. Modelo reológico da potência ou *power law*

No modelo *power law*, Equação 3, existe uma relação de potência entre a tensão cisalhante e a taxa de deformação, a qual é ajustada por dois parâmetros, k e n (BIRD *et. al.*,
2004). Para n > 1 o fluido é classificado como dilatante e para n < 1 o fluido é classificado como pseudoplástico.

$$\tau = k\gamma^n \tag{3}$$

em que:

τ é a tensão cisalhante, kg.m⁻¹.s⁻²; γ é a taxa de deformação, s⁻¹; k é o índice de consistência, kg.m⁻¹.sⁿ⁻¹; e n é o índice de comportamento, adimensional.

2.8.2. Modelo reológico Bingham

O modelo de Bingham, Equação 4, diferencia-se do newtoniano pela necessidade de uma tensão inicial mínima para o fluido escoar (BIRD *et. al.*, 2004). Possui correlação linear entre a tensão cisalhante e a taxa de deformação após o início do escoamento. É ajustado por dois parâmetros: limite de escoamento, LE, e viscosidade plástica, VP.

$$\tau = V P_B \gamma + L E_B \tag{4}$$

em que:

 VP_B é a viscosidade plástica do modelo de Bingham, kg.m.s⁻¹; e LE_B é o limite de escoamento do modelo de Bingham, kg.m.s⁻².

O limite de escoamento representa a tensão mínima a ser aplicada ao sistema fluido para que este entre em movimento. A viscosidade plástica faz analogia à viscosidade absoluta ou newtoniana e resulta das forças de atrito internas entre as diversas camadas do sistema fluido em movimento.

2.8.3. Modelo reológico Herschel-Buckley

O modelo de Herschel-Buckley, Equação 5, possui características dos modelos de *power law* e de Bingham (BIRD *et. al.*, 2004). A tensão varia potencialmente com o parâmetro $n_{\rm HB}$ e apresenta limite de escoamento LE_{HB}.

$$\tau = k_{HB}(\gamma)^{n_{HB}} + LE_{HB} \tag{5}$$

em que:

 k_{HB} é o índice de consistência do modelo de Herschel-Bulkley; kg.m⁻¹.sⁿ⁻¹; LE_{HB} é o limite de escoamento do modelo de Herschel-Bulkley, kg.m⁻¹.s⁻²; e n_{HB} é o índice de comportamento do modelo de Herschel-Bulkley, adimensional.

2.9. Regime de Escoamento

Um fluido ao escoar em um duto de seção regular apresenta características que determinam o regime de escoamento. No caso de não haver significativas flutuações de velocidade na seção transversal ao deslocamento, condição provocada pela consistência da viscosidade do fluido, diz-se que o fluido escoa em regime laminar. Este regime consiste em um estágio permanente do sistema no qual as linhas de corrente de fluxo deslizam umas sobre as outras, de maneira uniforme. Aumentado à vazão de escoamento chega-se em um estado em que ocorre a separação das linhas de corrente caracterizando o regime de transição, neste estágio as forças inercias começam a sobrepor as forças viscosas. Alterando a vazão de

escoamento a um ponto onde a condição de uniformidade do sistema modifique e o fluxo torne-se energeticamente instável, situação em que as lâminas apresentam movimentos caóticos em diferentes direções no interior das paredes do duto, chega-se ao regime turbulento. É observado neste escoamento o domínio completo das forças inerciais sobre as viscosas (SILVA *et. al.*, 1989).

A determinação do regime de escoamento para fluidos newtonianos é feita através do número de Reynolds, Equação 6, que relaciona forças de movimento e forças viscosas e é adimensional.

$$Re = \frac{Dv\rho}{\mu} \tag{6}$$

em que:

 μ a viscosidade de fluido, kg.m⁻¹.s⁻¹; v a velocidade de escoamento, m.s⁻¹; D o diâmetro do duto, m; e ρ a densidade do fluido, kg.m⁻³.

Estudando o escoamento de fluidos newtonianos, Reynolds chegou as seguintes conclusões: $\text{Re} \le 2100$ regime laminar; $2100 < \text{Re} \le 4000$, regime de transição e Re > 4000 regime turbulento (BIRD *et al.*, 2004).

Entretanto, para fluidos não newtonianos não existe uma determinação numérica em relação ao número de Reynolds para estabelecer a região de escoamento. Existem na literatura algumas soluções para determinação da região de transição dentre elas (SILVA *et al.*, 1989):

- determinação experimental da velocidade crítica e do número de Reynolds crítico;
- determinação da velocidade crítica através de equações matemáticas e
- determinação do número de Reynolds crítico através equações matemáticas.

2.9.1. Determinação experimental do regime de escoamento

Segundo Silva et al. (1989):

A região de transição pode ser obtida experimentalmente em qualquer sistema físico que permita medir, com precisão suficiente, o diferencial de pressão (ΔP) e a vazão de escoamento (Q).

Nas Figuras 7 e 8 são apresentadas as determinações das regiões de transição. Com os dados experimentais de diferencial de pressão (ΔP) e vazão de escoamento (V) constrói-se o gráfico ΔP versus V. Na Figura 7 pode-se observar a formação de três regiões distintas, que são determinadas pela inclinação das retas.

Os pontos que deram origem a reta R1 pertence ao regime laminar, os que deram a R2 ao regime de transição e a R3 ao regime turbulento. Os limites dos regimes de escoamento são caracterizados pelas inflexões das retas, onde podem ser obtidas as vazões crítica de escoamento. Sendo Q_L a vazão crítica de o regime laminar e Q_T a vazão crítica do regime de transição. Na Figura 8 não se obteve o regime de transição sendo traçadas as retas R1 e R3 referentes aos regimes laminar e turbulento, respectivamente. A vazão crítica de escoamento, Q_T , é determinada pela inflexão das retas R1 e R2.

O número de Reynolds crítico é calculado com valor de Q referente a inflexão das retas do regime laminar (R1) e do regime de transição (R2), ou (R3) no caso específico da Figura 8. Analogamente à vazão crítica, a velocidade crítica é a primeira velocidade medida que não pertence à reta (R1) (SILVA *et al.*, 1989).

Figura 7: Caso 1 – região de transição bem delineada.

Figura 8: Caso 2 – região de transição não definida.

2.9.2. Determinação da velocidade e do Reynolds crítico

Para fluidos não newtonianos, o número de Reynolds crítico irá depender da natureza reológica do fluido, sendo uma consequência do grau de afastamento de um fluido de comportamento newtoniano. No Quadro 2 são apresentadas equações utilizadas para a determinação do Reynolds crítico e da velocidade crítica.

Ryan e Jonhson (1959), analisando o escoamento em tubos de fluidos não newtonianos e que seguem o modelo reológico *power law*, formulou um critério mais geral para caracterizar os regimes de escoamento chegando a Equação 7. Essas equações não contém informação sobre a geometria do escoamento, depende apenas do índice de comportamento do modelo da potência. Através do cálculo da velocidade crítica, Craft (1962) e Thomas (1963) caracterizaram os regimes de escoamento de fluidos não newtonianos com limite de escoamento, Equações 8 e 9. Estudando o trabalho proposto por Ryan e Jonhson (1959), Hanks (1963) apresentaram um parâmetro de estabilidade generalizado, que independe da geometria, para fluidos com limite de escoamento descritos pelos modelos reológicos de Bingham e Herschel-Bulkley, Equação 10.

Mishra e Tripathi (1971) propuseram um critério de estabilidade do escoamento no regime laminar de fluidos puramente viscosos, Equação 11, não contendo informação sobre a geometria do escoamento e dependendo apenas do índice de comportamento do modelo da potência. Seus estudos foram baseados nos trabalhos desenvolvidos por Ryan e Jonhson (1959) e Hanks (1963).

CORRELAÇÃO	EQUAÇÃO		PARÂMETROS
RYAN E JONHSON (1959)	$\operatorname{Re}_{c} = \frac{6464n}{(1+3n)^{2}(2+n)^{-\frac{(2+n)}{(1+n)}}}$	(7)	Re_{c} – Reynolds crítico n – índice de comportamento
CRAFT (1962)	$v_c = \frac{1,078VP + 1,078\sqrt{VP^2 + 12,34D^2 LE\rho}}{\rho D}$	(8)	v_c – velocidade crítica VP – viscosidade plástica D – diâmetro do tubo LE- limite de escoamento ρ - densidade
THOMAS (1963)	$v_c = \sqrt{\frac{\operatorname{Re}_{cN} LE}{6\rho}}$	(9)	v_c – velocidade crítica Re _{cN} – número de Reynolds crítico Newtoniano LE- limite de escoamento ρ - densidade
HANKS (1963)	$Re_{c} = \frac{He}{8x_{c}} \left(1 - \frac{4}{3}x_{c} + \frac{1}{3}x_{c}^{4} \right)$ $\frac{x_{c}}{(1 - x_{c})^{3}} = \frac{He}{16800}$	(10)	Re _c – Reynolds crítico He – número de Hedstrom x _c - parâmetro de Hanks
MISHRA E TRIPATHI (1971)	$\operatorname{Re}_{c} = 2100 \frac{(4n+2)(5n+3)}{3(3n+1)^{2}}$	(11)	$Re_c - Reynolds crítico$ n - índice de comportamento

Quadro 2: Equações de Reynolds crítico encontradas na literatura (BRAGA, 2009).

2.10. Balanço de Energia

Considerando um fluido incompressível escoando entre dois pontos quaisquer, neste caso pontos 1 e 2, em regime estacionário e isotérmico, seu escoamento pode ser analisado macroscopicamente através da equação de Bernoulli modificada, Equação 12. Que representa o balanço de energia mecânico no escoamento (FOX *et. al.*, 2004).

$$\frac{P_1}{\rho g} + \frac{v_1^2}{2g} + z_1 + H_f - H_r - h_t = \frac{P_2}{\rho g} + \frac{v_2^2}{2g} + z_2$$
(12)

Em que P_1 e P_2 as pressões; v_1 e v_2 as velocidades médias; z_1 e z_2 as cotas nos pontos 1 e 2; H_f o somatório das cargas fornecidas ao sistema; H_r o somatório das cargas retiradas do sistema e h_t o somatório de toda perda de carga; ρ a massa específica do fluido e g a força gravitacional

A perda de carga para sistemas de escoamentos compostos por tubos e acessórios pode ocorrer através do tubo, que é conhecida como perda de carga distribuída, h_d , e através dos acessórios, perda de carga localizada, h_s . O somatório das duas perdas de carga totaliza a perda de carga do sistema, Equação 13.

$\mathbf{h}_{t} = \mathbf{h}_{s} + \mathbf{h}_{d}$	(13)

Considerando um fluido escoando por um trecho horizontal $(z_1=z_2)$, com área de escoamento constante $(v_1=v_2)$, onde não se tem fornecimento de energia $(H_f=0)$ e não possui acidentes (perda de carga localizada, $h_s=0$). Juntando e simplificando as Equações 12 e 13 chega-se na Equação 14, a qual permite o cálculo de perda de carga distribuída conhecendo-se a queda de pressão no tubo.

$$h_d = \frac{P_1 - P_2}{\rho g} = \frac{\Delta P}{\rho g} \tag{14}$$

A queda de pressão pode ser dada pela Equação 15 (FOX et. al., 2004).

$$\Delta P = 2\rho f \frac{L}{D} < \nu >^2 \tag{15}$$

em que f o fator de atrito de Fanning. É comum encontrar na literatura a definição do fator de atrito de Darcy, f_D . No entanto, as duas definições são correlacionadas por $f_D=4f$.

Experimentalmente, conhecendo-se a queda de pressão (ΔP_{exp}), a velocidade média (v), a massa específica do fluido (ρ), o comprimento da seção reta (L) e o diâmetro da tubulação (D), pode-se determinar o fator de atrito experimental (f_{exp}), pela Equação 16, (FOX *et. al.*, 2004).

$$f_{exp} = \frac{2\Delta P_{exp}D}{\rho L < v >^2} \tag{16}$$

2.11. Determinação do Fator de Atrito

Existem na literatura diversas correlações para a determinação do fator de atrito. Foram apresentadas, na sequência, as equações de fator de atrito para fluidos newtonianos, aplicadas na calibração da unidade, e para fluidos não newtonianos aplicadas na caracterização da perda de carga do escoamento de pastas de cimento que foram avaliadas neste trabalho.

2.11.1. Fluido newtoniano

Para fluido newtoniano, escoando em regime laminar, pode-se utilizar a equação do fator de atrito de Fanning, Equação 17, onde neste escoamento o fator de atrito é dependente apenas do número de Reynolds, não levando em consideração a rugosidade da parede do tudo pelo qual escoa (FOX *et. al.*, 2004).

$$f = \frac{16}{\text{Re}} \tag{17}$$

Em regime turbulento, devem-se levar em consideração as características físicas das paredes do material pelo qual o fluido escoa. Para tubo liso usa-se correlações como a de Blasius, Equação 18, e para tubo rugoso, usa-se correlações como a de Colebrook, Equação 19, (FOX *et. al.*, 2004).

$$f_s = \frac{0,0079}{Re^{0,25}} \tag{18}$$

$$\frac{1}{\sqrt{f}} = -4\log\left[\frac{\varepsilon/D}{3,7065} + \frac{1,2613}{\text{Re}\sqrt{f}}\right]$$
(19)

em que $\frac{\varepsilon}{D}$ é a rugosidade relativa do tubo (FOX *et. al.*, 2004).

17

2.11.2. Fluido não newtoniano

Para o escoamento de fluido não newtoniano em regime laminar cada modelo reológico possui um número de Reynolds generalizado como o qual se determina o fator de atrito. No Quadro 3 são apresentadas as correlações para determinação do fator de atrito nos modelos reológicos analisados neste trabalho.

A determinação do fator de atrito pelo modelo *power law* é feita através da Equação 19. Muito parecida graficamente com a equação utilizada para escoamento laminar, Equação 17, entretanto diferencia-se unicamente pelo número de Reynolds. O Re_p é função do diâmetro do tubo *D*, velocidade média do escoamento $\langle v \rangle$, massa específica do fluido ρ e dos parâmetros reológicos k e *n*.

Para o modelo reológico de Bingham, a correlação do fator de atrito, Equação 20, além de ser função do número de Reynolds do modelo é também do número de Hedstrom, He_B e dela mesma. O Re_B é função do diâmetro do tubo *D*, velocidade média do escoamento $\langle v \rangle$, massa específica do fluido ρ e viscosidade plástica VP, termo que diferencia do escoamento laminar. O número de Hedstrom é o adimensional que leva em consideração o limite de escoamento do fluido LE.

Com maior complexidade, o modelo reológico de Herschel-Bulkley incorpora os modelos *power law* e de Binghm. A correlação do fator de atrito, Equação 21, é função dos adimensionais He_{HB} e Re_{HB} e do parâmetro de tensão na parede τ_w . Re_{HB} é calculado a partir do diâmetro do tubo *D*, densidade do fluido ρ , velocidade média do escoamento $\langle v \rangle$ e dos parâmetros reológicos k e *n*. O He_{HB} é obtido a partir do limite de escoamento do fluido LE. O parâmetro τ_w é função do limite de escoamento LE, dos adimensionais He e Re e do próprio fator de atrito.

As correlações para o escoamento de fluidos não newtonianos em regime turbulento foram dispostas no Quadro 4. Tomita (1959) ao estudar o escoamento dos fluidos de Bingham propôs a Equação 22 para o cálculo do fator de atrito em diferentes diâmetros.

Ellis e George (1977) apresentaram a Equação 23 como proposta para o cálculo do fator de atrito. Uma vantagem apresentada pelos autores foi a necessidade somente do número de Reynolds para o calculo do fator de atrito. Silva *et al.* (1989) estudaram o escoamento da pasta de cimento e ao utilizar a correlação de Ellis e George (1977) constataram que esta apresentou os melhores resultados.

Churchill (1977) avaliou equações existentes na literatura, obteve um método que dispensa o uso de tabelas e interpolações gráficas e propôs a Equação 24. Dependente da rugosidade relativa do tubo e do número de Reynolds, a correlação pode ser aplicada a tubos com rugosidades conhecidas e lisos.

Darby e Melson (1981) propuseram a Equação 25 para o escoamento de fluidos de Bingham em tubos, a qual pode ser aplicada nos três regimes de escoamento. Procurando explicitar o fator de atrito nas correlações propostas por Dodge e Metzner (DMGomes), Ostawald de Waele (OWGomes) e Frank Schuh (FSGomes), no estudo do escoamento de fluidos da potência, Gomes (1987) propôs, pelos métodos dos mínimos quadrados, as Equação 26, 27 e 28. Silva *et al.* (1989) avaliaram estas equações e concluíram que os resultados foram satisfatórios no escoamento de pastas de cimento. Posteriormente, Darby *et. al.* (1992) propuseram alterações na equação original chegando à Equação 29.

MODELO	FATOR DE ATRITO NO REGIME LAMINAR	
POWER LAW	$f = \frac{16}{\text{Re}_{\text{P}}}$	(19)
	$k e_P = \frac{1}{k \left(\frac{8v}{D}\right)^{n-1} \left(\frac{3n+1}{4n}\right)^n}$	
BINCHAM	$f = \frac{16}{\operatorname{Re}_{B}} \left[1 + \frac{He_{B}}{6\operatorname{Re}_{B}} - \frac{He_{B}^{4}}{3f^{3}\operatorname{Re}_{B}^{7}} \right]$	(20)
DINGHAM	em que $\operatorname{Re}_{B} = \frac{D\langle v \rangle \rho}{VP_{B}}$ e $He_{B} = \frac{D^{2} \rho LE_{B}}{VP_{B}^{2}}$	-
	$f = \frac{2He_{HB}}{Re_{HB}^{2}} + \frac{16}{Re_{HB}} [A]^{-n_{HB}}$	(21)
HERSCHEL -BULKLEY	em que $[A] = \begin{bmatrix} \left(1 - \frac{LE_{HB}}{\tau_{w}}\right)^{3} + \frac{2(3n_{HB} + 1)}{(2n_{HB} + 1)} \left(\frac{LE_{HB}}{\tau_{w}}\right) \left(1 - \frac{LE_{HB}}{\tau_{w}}\right)^{2} + \\ \frac{(3n_{HB} + 1)}{(n_{HB} + 1)} \left(\frac{LE_{HB}}{\tau_{w}}\right)^{2} \left(1 - \frac{LE_{HB}}{\tau_{w}}\right) \end{bmatrix}$	
	em que $Re_{HB} = \frac{8D^{n_{HB}} \langle v \rangle^{2-n_{HB}} \rho}{k_{HB} [2(3n_{HB} + 1)/n_{HB}]^{n_{HB}}}$ e $He_{HB} = Re_{HB}^{2} \frac{LE_{HB}}{\rho \langle v \rangle^{2}} \qquad \frac{LE_{HB}}{\tau_{w}} = 2\frac{He_{HB}}{f Re_{HB}^{2}}$	

Quadro 3: Equações para o cálculo de fator de atrito no regime laminar (BRAGA, 2009).

Quadro 4: Equações para o cálculo de fator de atrito no regime turbulento (BRAGA, 2009).

AUTOR	FATOR DE ATRITO
TOMITA (1959)	$f = \frac{\lambda}{4}$ (23) em que $\frac{1}{\sqrt{\lambda}} = 2\log\left(\operatorname{Re}\frac{\sqrt{\lambda}}{2}\right) - 0,2$
ELLIS E GEORGE (1977)	$f = 0,00454 + 0,645 \text{Re}^{-0,70} $ (23)
CHURCHILL (1977)	$f = 2\left[\left(\frac{8}{\text{Re}}\right)^{12} + \frac{1}{(\text{A} + \text{B})^{3/2}}\right]^{\frac{1}{12}}$ (24) $A = \left[2,457\ln\frac{1}{(7)^{0.9}} + 0.27^{\frac{6}{6}}\right]^{16} = B = \left(\frac{37530}{\text{Re}}\right)^{16}$
	$\left[\left(\frac{\overline{Re}}{Re} \right)^{-+0,27} \overline{D} \right]$
DARBY E MELSON (1981)	$f = (f_{L}^{m} + f_{T}^{m})^{l/m} $ (25) em que $f_{L} = \frac{16}{Re} \left[1 + \frac{He}{6Re} - \frac{Re^{4}}{3f^{3}Re^{7}} \right] ; f_{T} = \frac{10^{a}}{Re^{0,290}} e m = 1,7 + \frac{40000}{Re}$ $a = -1,378 \left[1 + 0,14 \exp(-2,9X10^{-5}Re) \right]$
	DMGomes $f = 0.060 n^{0.462} Re^{-0.223}$ (26)
GOMES (1987)	$f = an^{b} Re^{c}$ OWGomes $f = 0,069n^{0,666} Re^{-0,235}$ (27) ESComes $f = 0.110n^{0,616} Re^{0,287}$ (28)
DARBY <i>ET</i> <i>AL</i> (1992)	$f = \frac{10^{a}}{\text{Re}^{0,193}}$ (29) em que $a = -1.47 \left[1 + 0.146 \exp\left(-2.9.10^{-5} \text{He}\right) \right]$

2.12. Diâmetro Hidráulico

Na cimentação a pasta de cimento fica submetida a dois tipos de geometrias principais. Quando a pasta de cimento é bombeada para dentro do revestimento caracteriza-se o escoamento circular e quando a pasta percorre o espaço formado entre o revestimento e a parede do poço caracteriza-se o escoamento anular. Nesta operação, o dimensionamento correto do anular tem papel definitivo no estabelecimento do regime de fluxo e estimativa de perdas de carga (SILVA *et. al.*, 1989).

Escoamentos em geometrias anulares não possuem diâmetro estabelecido. Contudo as correlações de diâmetro hidráulico geram fatores geométricos que representam a geometria circular, caracterizando as regiões de escoamento.

Considerando a região anular, formada por dois cilindros, como uma fenda, formada por duas placas planas desenvolveu-se analiticamente a equação de *slot*, Equação 30. Suas considerações são válidas quando a razão do diâmetro interno (D_1) e externo (D_2) é maior que 0,3 (BOURGOYNE *et al*, 1991).

$$DH1 = 0,816 (D_2 - D_1) \tag{30}$$

A teoria do raio hidráulico determina o diâmetro através da razão entre a área da seção transversal sobre o perímetro molhado da região anular, que é equivalente a quatro vezes o valor do raio hidráulico, Equação 31, (BIRD *et al*, 2004).

$$DH2 = 4R_H = (D_2 - D_1) \tag{31}$$

Uma terceira correlação foi proposta por Paraíso (2011). Analisando os coeficientes angulares das retas formadas pelos gráficos de ΔP versus Q para o regime laminar e ΔP versus Q^{1,75} para o regime turbulento, Paraíso (2011) determinou os valores do diâmetro hidráulico experimental que foram usados na construção da correlação de diâmetro hidráulico apresentada na Equação 32.

$$DH3 = 0,702 (D_2 - D_1) + 0,0014$$
(32)

Todas as equações apresentadas, modelos reológicos, Reynolds crítico, fator de atrito e diâmetro hidráulico foram testadas na modelagem matemática do escoamento da pasta de cimento analisada neste trabalho.

3 MATERIAIS E MÉTODOS

Neste capítulo serão apresentadas a unidade experimental e os equipamentos utilizados para que fossem viabilizados os escoamentos das pastas e a aquisição dos dados, assim como a metodologia utilizada nas análises dos mesmas.

3.1 Unidade Experimental

Para a análise do escoamento das pastas de cimento foi construída uma unidade de simulação de escoamento de fluidos no Laboratório de Escoamento de Fluidos, LEF, do Instituto de Tecnologia da UFRRJ, que obtinham dados de pressão, temperatura e vazão, Figura 9 e 10. A unidade foi equipada com um sistema composto de tubos e conexões de ferro galvanizado, uma bomba de deslocamento positivo do tipo helicoidal de 25HP de potência, um tanque de 500 litros com sistema de refrigeração e aquecimento, transdutores de pressão e medidor de vazão. A unidade foi projetada para realizar escoamentos em circuito aberto ou fechado. Entretanto para as avaliações das pastas de cimento o escoamento foi realizado em circuito fechado.

Figura 9: Foto da unidade de simulação de escoamento de fluidos (USEF).

Figura 10: Esquema da unidade de escoamento de pasta.

O escoamento da pasta foi realizado em tubos de ferro galvanizados com quatro geometrias diferentes: circular 1", anular I (2" e 1 1/2"), anular II (1 1/2" e 1") e anular III (1 1/4" e 3/4") e em três temperaturas distintas: 15, 25 e 60°C.

3.2 Equipamentos Utilizados na Unidade Experimental

A unidade experimental foi projetada para atender as características do escoamento de fluidos de um poço de petróleo real, onde foram atendidas as similaridades geométricas na razão de diâmetros dos anulares e do número de Reynolds. A seguir são detalhados os equipamentos que compuseram a unidade experimental.

3.2.1 Bomba

Segundo dados fornecidos pelo CENPES-PETROBRAS, em um processo de cimentação a vazão máxima é de 10 barris.min⁻¹. Para atender a tal critério foi utilizada uma bomba helicoidal da marca GEREMIAS (WEATHERFORD), de deslocamento positivo de 25HP e 12 kgf.cm⁻² de pressão de descarga, Figura 11.

Figura 11: Bomba helicoidal de 25HP e 12 kgf.cm⁻² de pressão de descarga.

3.2.2 Tanque

O tanque, Figura 12 e 13, foi construídos de aço inox e encamisado para promover o aquecimento, utilizando resistências elétricas de 5000 kw, ou a refrigeração, circulando agua resfriada na camisa, das pastas. Foi dimensionado para misturar 200 litros de pasta, com um sistema de agitação formado por um agitador de 3,3 kw e rotação de até 1800 rpm com dispersor do tipo *cowlos*.

Figura 12: Foto do tanque da unidade.

Figura 13: Desenho com cotas em milímetros do tanque de mistura.

3.2.3 Refrigeração

A pasta podia ser resfriada por um sistema de refrigeração (*Chiller*), Figura 14, capaz de refrigerar água a temperatura de 5°C e a potência de 15 000 kcal.h⁻¹. O sistema possuía um refrigerador fabricado pela Friotec, modelo TF-15 AR.

Figura 14: Foto de *chiller* da unidade experimental.

3.2.4 Tubos

A montagem do trecho experimental e de toda tubulação da unidade foram elaboradas utilizando-se tubos de ferro galvanizado e, para o trecho experimental, diferentes diâmetros. A construção dos trechos experimentais seguiu as razões dos diâmetros dos poços reais apresentadas na Tabela 2. Foram calculadas as razões (ξ) entre os diâmetros externos e internos dos tubos utilizados nos poços de petróleo reais e definidos três trechos de dutos experimentais de geometrias anulares similares.

		DIÂM	ETRO		_
	Exter	no	Inter	no	ξ
ANULAK	Nominal (pol)	Real D1 (m)	Nominal (pol)	Real D2 (m)	(D1/D2)
Ι	2	0,0539	1 1/2	0,0483	1,12
Π	1 1/2	0,0421	1	0,0337	1,24
II	1 1/4	0,0365	3/4	0,0269	1,33

 Tabela 2: Arranjo ds anulares concêntricos (PARAÍSO, 2011).

Para garantir a centralização do tubo interno foram distribuídos três conjuntos de quatro suportes próximos às entradas, no meio e próximos às saídas dos tubos, de tamanhos idênticos e equidistantes na direção radial, Figura 15.

Figura 15: Tubos que compunham os trechos experimentais. (a) tubo interno; (b) suportes do tubo interno e (c) conector para tomada de pressão do trecho experimental.

Um fator analisado, também discutido por Paraíso (2011), foi o estabelecimento do regime de escoamento na tubulação, o qual nortearia as posições das tomadas de pressão em relação as entrada e saída dos tubos. Dodge & Metzer (1959) estabeleceram que para dutos circulares com escoamento de fluidos não newtonianos, o comprimento de entrada precisa ser 53 vezes maior que o diâmetro da tubulação. Fox *et al.* (2004), ao estudarem o perfil de velocidade, constataram que o mesmo torna-se plenamente desenvolvido ao longo do duto em um comprimento, a partir da entrada, de 25 a 40 vezes maior que o diâmetro da tubulação. Seguindo as instruções da literatura e utilizado o equação de diâmetro DH2, Equação 31, foi construída a Tabela 3, onde foram apresentados os valores de comprimento de entrada sugeridos por Dodge & Metzer (1959) e Fox *et al.* (2004) para o sistema deste trabalho.

	DII3	COMPRIMENTO DE ENTRADA		
ANULAR	(m)	DODGE & METZER (1959) (m)	FOX et al. (2004) (m)	
Ι	0,0056	0,297	0,224	
II	0,0081	0,429	0,324	
III	0,009	0,477	0,36	
CIRCULAR	0,0272	1,442	1,088	

Tabela 3: Comprimento de entrada proposto por Dodge & Metzer (1959) e Fox et. al. (2004)

Os estudos realizados por Dodge & Metzer (1959) e Fox *et al.* (2004) estão relacionados ao escoamento em dutos circulares. Devido à escassez de trabalhos com o mesmo foco para geometrias anulares e baseado na Tabela 3, foi adotado neste trabalho que as tomadas de pressão deveriam ser posicionadas em um comprimento 100 vezes maior que o diâmetro hidráulico para os anulares e um comprimento que excedesse o apresentado por Dodge & Metzer (1952), visto que era o maior. Tais medidas foram seguidas para garantir que o regime de escoamento estivesse estabelecido e que os dados de pressão não fossem mascarados. Desta forma, as linhas anulares tinham 3,0m de comprimento com duas tomadas de pressão posicionadas a 1,0m e 2,5m da entrada. Para o tubo circular foi definido o diâmetro de 1", o tamanho de 6,0m e as tomadas de pressão a 2,0m e 4,0m da entrada.

3.2.5 Medidor de vazão

Indicado para medição de líquidos de alta e baixa viscosidade, lamas e emulsões contendo partículas sólidas em suspensão, o medidor de vazão da Metroval da modelo RHM40-3FS1PN, Figura 16, foi utilizado neste trabalho. Podendo ser lidos os dados de densidades e vazões mássicas. Este equipamento possui tubulações internas de inox sendo resistente a fluidos corrosivos.

Figura 16: Foto do medidor de vazão e densidade coriollis da unidade.

3.2.6 Transdutor de pressão

O endurecimento da pasta de cimento nos equipamentos foi um ponto de preocupação na escolha dos transdutores de pressão. Para a leitura das pressões foi utilizado o transdutor diferencial de pressão com selo remoto, Figura 17, fabricado pela empresa Smar.

Figura 17: Imagem de transdutor de pressão diferencial com selo remoto.

Uma particularidade deste equipamento é que o selo remoto possui um fluido em contato com uma membrana inox impedindo o contado com a pasta de cimento. A membrana inox era sensível aos movimentos provocados pelo escoamento da pasta, os movimentos eram transmitidos para o fluido e deste para o transdutor, que fazia a leitura da pressão. O transdutor, contudo não entrava em contato direto com a pasta de cimento. A faixa de pressão do transdutor foi de 0 a 7 kgf.cm⁻², sendo possível ser alterada para 0 a 24 kgf.cm⁻².

3.3 Equipamentos Utilizados nos Experimentos

Para a realização dos experimentos foram utilizados, além da unidade experimental, misturador de sólidos, viscosímetro FANN 35A, consistômetro e balança de lama.

3.3.1 Misturador de Sólidos

Os materiais sólidos foram previamente misturados em um misturador sólido em forma de Y, Figura 18, por 10 minutos. O misturador tinha capacidade para 200 litros de sólidos e velocidade de rotação de 18 rpm.

Figura 18: Misturador de sólidos em forma de Y.

3.3.2 Viscosímetro FANN 35A

Os dados reológicos foram coletados no viscosímetro FANN 35A, Figura 19 (a). Os testes foram realizados de forma descendente com as seguintes velocidades angular do *spidle*: 300, 200, 100, 60, 30, 6 e 3rpm. O copo do viscosímetro foi encamisado e acoplado a um refrigerador, Figura 19 (b), para manter a temperatura da pasta constante.

Figura 19: (a) Viscosímetro FANN 35 A. (b) Conjunto banho termostático, viscosímetro FANN 35A e copo encamisado.

O viscosímetro possui um sistema bob-rotor. A rotação imposta ao rotor a uma velocidade constante proporciona um torque no bob causando uma deformação angular na mola situada na parte superior do viscosímetro. De posse da rotação e deformação angular foi possível, através das Equações 33 e 34, o cálculo da taxa de deformação (γ) e da tensão de cisalhamento (τ), sendo possível obter os parâmetros reológicos e avaliar os modelos estudados (MACHADO, 2002).

$$\gamma = 1,7023 \times \Omega \tag{33}$$

$$\tau = 0.511 \times \theta \tag{34}$$

em que:

 τ - é a tensão de cisalhamento, em Pa;

 γ - é a taxa de deformação, em s⁻¹;

 Ω - a rotação do rotor, em rpm; e

 $\boldsymbol{\theta}$ - a deformação angular, em graus.

3.3.3 Balança de lama

A massa específica da pasta de cimento foi obtida utilizando uma balança de lama, Figura 20.

Figura 20: Balança de lama Campos (2006).

Esse equipamento determina massa específica da pasta de cimento tanto no laboratório quanto no campo. Consiste em uma haste metálica graduada que contém dois recipientes (copos) nas suas extremidades, sendo um o local onde se coloca a amostra a ser testada, e o outro é o local onde há pequenos pesos de chumbo. Esta haste é apoiada sobre um suporte e nela corre um cursor que a estabiliza horizontalmente em relação ao solo, neste ponto de equilíbrio tem-se a massa específica da pasta (CAMPOS *et. al.*, 2002).

3.3.4 Consistômetro

Para garantir que a pasta não iria iniciar sua cura antes que os dados fossem obtidos foram feitos ensaios consistométicos, que eram realizados no consistômetro atmosférico da Chandler Engineering do modelo 1200, Figura 21. Este equipamento é utilizado para determinar o tempo de espessamento da pasta de cimento, ou tempo de pega. Ele simula a temperatura de escoamento da pasta, sendo a temperatura máxima de 180° F.

O tempo de espessamento é definido como o tempo requerido para atingir 100Uc, onde Uc significa unidade consistomética. Este valor representa o tempo estimado que a pasta de cimento permanece em estado fluido a uma determinada temperatura e pressão. O tempo de bombeamento foi definido como sendo 50Uc, que representa o valor limite que a pasta pode ser bombeável. Com o resultado do tempo de espessamento e da bombeabilidade, têm-se

uma informação do tempo disponível para efetuar os experimentos com segurança. Neste trabalho depois de 10 horas de agitação das pastas atingiu 50 Uc. Indicando, pois, este como o tempo de coleta dos dados.

O equipamento consiste de cilindros rotativos, onde a pasta foi colocada, equipados com um conjunto de palhetas estacionárias. O cilindro é girado a 150 rpm durante o teste. A hélice imersa na pasta é presa a um sistema mecânico, que avalia o torque sofrido pela mola, através do deslocamento de um indicador fixado em sua parte central (CAMPOS *et. al.*, 2002).

Figura 21: Consistômetro atmosférico Chandler Engineering, modelo 1200.

3.4 Formulação das Pastas

No projeto de cimentação elaborado para a PETROBRAS foram avaliadas três pastas de cimento com composições diferentes e que eram utilizadas no processo real de cimentação de poços de petróleo. A seguir são apresentadas as formulações das pastas fornecidas pelo CENPES/PETROBRAS

<u>Pasta 1</u>: composta de cimento classe G, água doce, agente antiespumante e retardador de pega ambos da Schlumberger, Paraíso, (2011).

<u>Pasta 2</u>: composta de cimento classe G, água doce, sílica ativa, agente antiespumante e retardador de pega ambos da Schlumberger, dados disponíveis em anexo.

<u>Pasta 3</u>: composta de cimento classe G, água doce, sílica ativa, microesfera oca de cerâmica, agente antiespumante e retardador de pega ambos da Schlumberger, discutida neste trabalho.

As composições das pastas não podem ser relatadas por questão de sigilo de contrato. Na Figura 22 pode-se observar a pasta sendo homogeneizada no tanque da unidade experimental.

Figura 22: Pasta de cimento sendo homogeneizada no tanque da unidade experimental.

3.5 Análise Granulométrica da Microesfera

A pasta 3 apresentava características de pasta de cimento leve, por possuir microesferas cerâmicas ocas. Por as microesferas não suportarem pressões hidrostáticas muito elevadas, emprega-se pasta de cimento com composição da pasta 3 na cimentação de poços de petróleo rasos. A preparação da pasta seguiu uma metodologia utilizada na operação de cimentação e indicada pelo CENPES/PETROBRAS, que será detalhada a seguir, para não diferenciar das pastas utilizadas na cimentação real dos poços de petróleo.

A granulometria da microesfera influencia na característica da pasta. Para a pasta 3 foram realizados testes granulométricos utilizando agitador eletromagnético AGMAG, com capacidade para 6 peneiras e que possuía reostato para controlar a intensidade das vibrações, Figura 23. As peneiras granulométricas eram redondas com diferentes aberturas.

Figura 23: Conjunto agitador eletromagnético e peneira granulométrica.

Foram utilizadas peneiras com aberturas de 0,045; 0,106; 0,212 e 0,300 mm. A análise dos dados de granulometria da microesfera consistiu em avaliar os tamanhos dos grãos da microesfera em relação ao peso total, sendo assim os dados fofam plotados no histograma granulométrico, Figura 23, tamanho do grão versus % do peso total, onde pose-se inferir que os grãos se concentraram nas peneiras de 0,212 e 0,106mm de abertura.

Figura 24: Histograma granulométrico da microesfera cerâmica.

3.5.1 Preparo e Escoamento da Pasta 3

Ao receber as composições das pastas do CENPES/PETROBRAS foram feitos testes de consistometria para avaliar o tempo de cura da pasta. Os testes realizados foram de bancadas e possuíam volumes de 1L. As pastas aprovadas no teste possuíam Uc em torno de 50Uc depois de 10 horas de teste. Ao ser aprovada a pasta seguia-se a metodologia apresentada na Figura 23.

Os materiais sólidos, o cimento Portland, a sílica ativa e a microesfera, eram pesados e misturados no misturador de sólidos durante 10 min. O tempo de mistura foi definido através de análises de homogeneização, onde em teste primário os sólidos foram misturados e de três em três minutos, durante 30 min, foram coletadas amostras para avaliar o tempo de mistura. Com os dados coletados foram obtidas as densidades de cada amostra e verificou-se que a partir 3 minutos a densidade não apresentava mais variação. Os materiais líquidos, a água doce e os aditivos, eram homogeneizados no tanque da unidade experimental. Após o processo de homogeneização dos materiais líquidos os materiais sólidos eram adicionados e a pasta era homogeneizada até atingir a temperatura inicial de escoamento, 15°C. Atingida a temperatura inicial principiava-se o escoamento da pasta e concomitantemente faziam-se as análises reológicas. Ao fim da coleta dos dados da temperatura de 15°C, para todas as geometrias, elevava-se a temperatura a 25°C e finalizavam-se os experimentos coletando-se os dados na temperatura de 60°C. Na unidade experimental, a temperatura era controlada através do refrigerador e das resistências. No viscosímetro por meio do conjunto de banho termostático acoplado ao copo encamisado do viscosímetro.

A temperatura é um fator que afeta a eficiência da cimentação de um poço de petróleo. A pasta de cimento é injetada no poço pela coluna de revestimento, que com a profundidade do poço tem o diâmetro diminuído. A redução do diâmetro força o fluido a deslocar com maior velocidade e causa maior fricção do fluido com a parede do duto. Este aumento propicia a elevação da temperatura (CAMPOS *et. al.*, 2002).

Campos *et. al.* (2002) apresenta o diferencial de temperatura entre o fundo do poço e o topo como um problema na perfuração quando uma pasta de cimento possui uma formulação que apresenta adequado tempo de espessamento nas condições de fundo do poço e inadequado desenvolvimento de resistência compressiva nas condições estáticas do topo da coluna de cimento. Como solução propõe que a temperatura de circulação do fundo do poço seja inferior à temperatura estática do topo da coluna de cimento.

Contudo as temperaturas de 15, 25 e 60°C são usualmente aplicadas na perfuração. Motivo pelo qual também será avaliada neste trabalho.

3.6 Metodologia Utilizada para a Avaliação de Equações

A metodologia empregada neste trabalho foi baseada em um projeto de pesquisa realizado por Silva (1989) no CENPES, no qual foi avaliado o desempenho de equações apresentadas na literatura, destinadas a apresentar o comportamento reológico de fluidos newtonianos e não newtonianos, ao dimensionamento de equações anulares, à determinação da zona transitória e a estimativa da perda de carga no regime turbulento.

3.6.1 Regime laminar

Foram feitas avaliações do comportamento reológico das pastas de cimento através dos experimentos realizados no viscosímetro FANN 35^a.

Em seguida foram avaliadas as equações do diâmetro hidráulico.

Figura 25: Fluxograma da metodologia do teste das pastas de cimento

Avaliação do comportamento reológico

O calculo dos parâmetros reológicos dos modelos *power law* e de Bingham foram feitas regressões com ajustes das variáveis. No modelo de Herschel-Buckley os parâmetros são obtidos por meios de regressão não linear. O modelo reológico que melhor descreve o comportamento do fluido foi o que obteve índice de correlação mais próximo da unidade.

Avaliação de equações para diâmetro hidráulico

A indicação da equação de diâmetro hidráulico mais adequado a um fluido de comportamento reológico conhecido escoando em uma geometria pré-estabelecida foi obtida comparando as perdas de cargas teóricas e experimentais medida na unidade experimental no regime laminar.

3.6.2 Regime turbulento

Reynolds crítico

A caracterização da passagem do regime laminar para o turbulento foi realizada conforme o item 2.11, onde foi feita a determinação experimental do número de Reynolds crítico e a estimativa da velocidade crítica segundo diferentes correlações matemáticas.

A metodologia adotada seguiu a seguinte exposição:

- passo 1: Foram feitas as identificações experimentais das regiões laminar (R1), transitória (R2) e turbulenta (R3); e
- passo 2: Foram feitas as determinações do número de Reynolds crítico experimental.

Correlações de fator de atrito

O procedimento adotado para avaliar as correlações de fator de atrito no regime turbulento obedeceu a seguinte metodologia.

- 1° Determinação experimental do diferencial de pressão (ΔP) e Q.
- 2° Determinação do fator de atrito experimental pela equação.
- 3° Comparação entre os fatores de atrito experimentais e teóricos através das medidas dos erros percentuais médios absolutos.

Os cálculos, gráficos e tabelas das equações analisadas foram feitos no Microsoft Excel 2011.

3.7 Avaliação das Incertezas

Neste trabalho foram adotadas as análises de incertezas experimentais feitas por Paraíso (2011) para o cálculo de fator de atrito e diferencial de pressão. Foram utilizados o modelo reológico Bingham, as correlações de Ellis e George (1977) e Darby e Melson (1981) e a equação de diâmetro hidráulico DH2.

No Quadro 5 foram apresentadas as incertezas das variáveis experimentais fornecidas pelos fabricantes dos equipamentos ou definidas pelo cálculo da metade da menor escala de leitura, no caso do FANN 35 A. As incertezas referentes ao comprimento do trecho reto, diâmetro dos dutos e aceleração da gravidade não foram consideradas significativas (PARAÍSO, 2011).

VARIÁVEL EXPERIMENTAL	2σ _i	UNIDADE
ΔP (transdutor)	0,075	% span
W (vazão mássica)	0,18	% span
ρ (densidade)	0,15	% span
θ (def. angular)	0,5	graus

Quadro 5: Incertezas das variáveis experimentais (PARAÍSO, 2011).

No Quadro 6 foram dispostas as incertezas estimadas para os parâmetros do modelo reológico Bingham obtidas por Paraíso (2011).

Quadro 6: Incertezas estimadas dos parâmetros d modelo reológico Bingham (PARAÍSO, 2011).

Temperatura (°C)	Grandezas	2 σ _i	Unidades
15	VPB	0,00673	Pa.S
15	LEB	0,275	Ра
25	VPB	0,00048	Pa.S
25	LEB	0,398	Ра
60	VPB	0,00093	Pa.S
00	LEB	1,328	Ра

No Quadro 7 foram dispostas a propagação das incertezas experimentais da velocidade média (<v>), número de Reynolds modificado e do número de Hedstron (PARAÍSO, 2011).

Temperatura (°C)	Grandezas	2σ _i
	<v></v>	0,23
15	Re _B	24,08
	He _B	49,05
	<v></v>	0,23
25	Re _B	2,26
	He _B	27,10
	<v></v>	0,23
60	Re _B	10,43
	Не _в	29,06

Quadro 7: Incertezas médias percentuais das variáveis calculadas (PARAÍSO, 2011).

Com as incertezas estimadas dos parâmetros e das variáveis calculadas, Paraíso (2011) calculou as incertezas das variáveis de interesse para o modelo reológico Bingham. No Quadro 8 são apresentados as propagação das incertezas de fator de atrito nas geometrias anulares com as equações de fator de atrito experimental, Ellis e George (1977) e Darby e Melson (1981).

Quadro 8: Propagação das incertezas experimentais no cálculo de fator de atrito. Obtido de Paraíso (2011).

Equação	Incerteza (%)		
Equação	Anular I	Anular II	Anular III
Experimental	0,58	0,53	0,53
Ellis e George (1977)	5,33	0,91	1,90
Darby e Melson (1981)	4,66	0,95	2,69

Pode ser observado no Quadro 9 a propagação das incertezas experimentais para o diferencial de pressão calculado ($\Delta P_{Calc.}$). O cálculo destas incertezas foi feito para a geometria anular II utilizando a equação DH2 e nas três temperaturas.

Equação	Incerteza (%)		
Equação	15°C	25°C	60°C
Ellis e George (1977)	5,36	1,04	1,69
Darby e Melson (1981)	4,69	1,07	2,74

Quadro 9: Propagação das incertezas experimentais no $\Delta P_{Calc.}$. Obtido de Paraíso (2011).

4 RESULTADOS E DISCUSSÕES

Neste capítulo foram apresentados os resultados obtidos experimentalmente para o escoamento das três pastas de cimento, sendo disposto em três partes. A primeira destina-se a apresentação dos dados referentes à calibração da unidade experimental. A segunda parte ao estudo do escoamento da pasta de cimento 3. Por fim a última parte refere-se às análises estatísticas do escoamento das três pastas. Nas duas ultimas partes foi discutida a eficiência de equações propostas pela literatura, apresentadas anteriormente, para o cálculo da perda de carga no escoamento das pastas, utilizadas, como já discutido, em um processo real de cimentação de um poço de petróleo.

4.1 Calibração da Unidade Experimental

Antes dos escoamentos das pastas de cimento serem realizados, a unidade experimental foi calibrada com água utilizando a geometria circular. A calibração não poderia ser feita nas geometrias anulares devido à associação de erro por meio das equações do diâmetro hidráulico. As análises da calibração foram feitas através de gráficos log-log de fator de atrito versus número de Reynolds e pelo erro médio absoluto entre os dados teóricos e experimentais, Equação 35.

$$Erro = \left| \frac{f_{Exp} - f_{Blasius}}{f_{Exp}} \right| 100$$
(35)

A calibração foi feita no regime laminar e foi utilizada a Equação 16 para o cálculo do fator de atrito experimental e Equação 17 para o teórico. A Figura 26 apresenta um gráfico típico de calibração e indica que os dados de fator de atrito teóricos ficaram muito próximos dos experimentais, sobrepondo-se ao experimental em alguns casos. O erro médio absoluto obtido foi de 1,2%. O que indica que a unidade está apita a operar com pasta de cimento.

Figura 26: Gráfico Reynolds versus fator de atrito da calibração da unidade experimental na geometria circular.

4.2 Estudo da Pasta 3

Com a unidade experimental calibrada, foram realizados os escoamentos da pasta de cimento 3 e com os dados experimentais obtidos foram feitas as avaliações das equações, apresentadas no capítulo 2, referentes aos modelos reológicos, diâmetro hidráulico, Reynolds crítico e fator de atrito, utilizadas para descrever o escoamento de pastas de cimento.

4.2.1 Reologia

No escoamento da pasta 3 foram avaliados os modelos reológicos *power law*, Bingham e Herschel-Buckley, nas temperaturas de 15, 25 e 60°C, os resultados são apresentados na Tabela 4. As pastas escoavam nas geometrias circular 1" e anulares: anular 1 (2" e 1 1/2"); anular 2 (1 1/2" e 1") e anular 3 (1 1/4" e 3/4"). A análise do modelo reológico foi realizada comparando os coeficientes de correlação dos modelos testados. O modelo que obteve índice de correlação mais próximo da unidade (destacado em negrito) foi o que melhor descreveu o comportamento reológico do fluido. Foi utilizado o viscosímetro FANN 35A para a obtenção dos dados reológicos ao longo de cada experimento. Como pode ser visto na Tabela 4, o modelo Herschel-Buckley obteve os índices de correlação mais próximos da unidade independente das geometrias ou temperaturas. Este resultado também foi obtido por Silva *et. al.* (1989) avaliando o desempenho de equações utilizadas na determinação escoamento de pastas de cimento em geometrias e temperaturas distintas e Paraíso (2011) avaliando o escoamento da pasta 1 nas mesmas condições apresentadas neste trabalho, vale destacar que o modelo Bingham foi o segunda melhor opção e por último o modelo de *power law*.

		COEFICIE	NTE DE CO	RRELÇAO
DUTOS	T(°C)	Power Law	Bingham	Herschel- Buckley
	15	0,9716	0,9973	0,9998
Circular	25	0,9673	0,9978	0,9999
	60	0,9570	0,9970	0,9998
	15	0,9712	0,9967	0,9998
Anular I	25	0,8319	0,9943	0,9949
	60	0,9693	0,9936	0,9965
A	15	0,9802	0,9965	0,9992
Anular	25	0,9738	0,9930	0,9999
11	60	0,9582	0,9967	0,9993
Amulan	15	0,9906	0,9936	0,9998
Anular	25	0,9815	0,9925	0,9998
	60	0,9636	0,9962	0,9997
MÉDIA	15	0,9811	0,9954	0,9998
	25	0,9387	0,9944	0,9986
	60	0,9620	0,9959	0,9988

Tabela 4: Coeficiente de correlação dos modelos reológicos *power law*, Bingham e Herschel-Buckley nas temperaturas de 15, 25 e 60°C. Pasta 3.

Avaliando a Tabela 5, referente aos parâmetros reológicos dos modelos, vê-se que a variação das temperaturas causou variações nos parâmetros reológicos dos modelos

analisados. O índice de consistência obteve baixa variação média tanto para o modelo reológico *power law*, quanto Herschel-Buckley, atribuindo característica para a pasta de cimento 3 de fluido pseudoplástico. A variação do limite de escoamento foi mais significativa entre as temperaturas de 25 e 60°C, tanto para o modelo reológico Bingham, quanto Herschel-Buckley, notando-se que com o aumento da temperatura diminuiu a tensão de escoamento, consequentemente o fluido tem mais facilidade para escoar. Os parâmetros similares a viscosidade foi decaindo conforme o aumento da temperatura.

Tabela 5: Parâmetros reológicos médios n (índice de comportamento), k (índice de consistência), LE (limite de escoamento) e VP (viscosidade plástica) por temperatura dos modelos de *power law*, Bingham e Herschel-Buckley nas temperaturas de 15, 25 e 60°C.

rasia 3.												
GEOMETRIA (m)	т	POWE	ER LAW	BING	GHAM	HERSCHEL-BUCKLE						
	(°C)	n (adm.)	K (Pa.S ⁿ)	LE (Pa)	VP (Pa.S)	n (adm.)	K (Pa.S ⁿ)	LE (Pa)				
CIRCULAR	15	0,55	1,73	5,84	0,116	0,88	0,25	4,15				
	25	0,54	1,26	4,05	0,078	0,90	0,16	3,06				
	60	0,48	1,04	3,04	0,044	0,87	0,10	2,35				
ANULAR I	15	0,56	1,47	5,13	0,101	0,87	0,24	3,47				
	25	0,28	3,35	5,99	0,034	0,96	0,05	5,84				
	60	0,48	0,98	3,06	0,042	0,81	0,11	8,80				
	15	0,56	1,45	5,49	0,104	0,82	0,35	2,95				
ANULAR II	25	0,50	1,54	5,10	0,072	0,80	0,26	3,21				
	60	0,49	0,93	2,78	0,043	0,88	0,09	2,14				
	15	0,49	0,98	3,59	0,075	0,81	0,25	1,70				
ANULAR III	25	0,53	1,21	4,37	0,069	0,80	0,25	2,47				
	60	0,49	0,98	2,98	0,045	0,86	0,11	2,20				
	15	0,54	1,38	5,01	0,10	0,84	0,27	3,06				
MÉDIA	25	0,46	1,34	4,51	0,07	0,83	0,22	2,91				
	60	0,49	0,98	2,93	0,04	0,87	0,10	2,23				

4.2.2 Regime de escoamento

As determinações dos regimes de escoamentos foram realizadas seguindo a metodologia apresentada, onde com os dados experimentais de vazão e pressão foram construídos gráficos cartesianos de diferencial de pressão versus vazão para cada escoamento realizado. Para exemplificar, foram apresentados gráficos típicos para os escoamentos nas quatro geometrias, selecionando uma temperatura para cada geometria. As análises feitas nos quatro gráficos, Figuras 27 a 30, apresentados também foram realizadas em todos os escoamentos.

Os escamentos da pasta 3 nas geometrias circular a temperatura de 15°C, Figura 27, anular I a temperatura de 60°C, Figura 28, e anular II a temperatura de 25°C, Figura 29, obtiveram dois regimes de escoamento representados pelas retas R1 (regime laminar) e R2 (Regime turbulento). A intercessão das duas retas definiu a velocidade crítica de escoamento, sendo para geometria circular a 15°C de 0,0042m³.s⁻¹; para geometria anular I a 60°C de 0,00225 m³.s⁻¹e para geometria anular II a 25°C de 0,00445 m³.s⁻¹.

O escoamento na geometria anular III a temperatura de 60°C, Figura 30, obteve os três regimes de escoamento definidos, sendo representados pelas retas R1 (regime laminar), R2 (regime de transição) e R3 (regime turbulento). A intercessão das retas R1 e R2 definiu a vazão crítica de escoamento que foi de $0,0022 \text{ m}^3.\text{s}^{-1}$.

Figura 27: Gráfico de diferencial de pressão (ΔP) versus vazão de escoamento (Q), geometria circular.

Figura 28: Gráfico de diferencial de pressão (ΔP) versus vazão de escoamento (Q), geometria anular I.

Figura 29: Gráfico de diferencial de pressão (ΔP) versus vazão de escoamento (Q), geometria anular II.

Figura 30: Gráfico de diferencial de pressão (ΔP) versus vazão de escoamento (Q), geometria anular III.

No escoamento da pasta 3 nas geometrias anular I e II na temperatura de 15°C não foi possível a obtenção dos três regimes de escoamento, sendo delineada unicamente a R1. O que indica escoamento só em regime laminar, portanto não foi possível fazer as avaliações.

4.2.3 Reynolds crítico

Nas Tabelas 6, 7 e 8 foram apresentados os dados referentes as equações de Reynolds crítico utilizando os modelos reológicos de *power law*, Bingram e Herschel-Buckley nas temperaturas de 15, 25 e 60°C.

A comparação entre os resultados experimentais e teóricos foi feita através de medida do erro absoluto, Equação 39, para todas as vazões e calculando posteriormente o erro percentual médio absoluto.

$$Erro = \left| \frac{Re_{Exp} - Re_{Teor}}{Re_{Exp}} \right| 100 \tag{39}$$

Os erros percentuais médios absolutos menores que 25% foram considerados satisfatórios e destacados em negrito (SILVA, *et. al.*, 1981).

Analisando a Tabela 6, referente ao escoamento da pasta 3 na temperatura de 15°C, observou-se que as equações de Jonhson (1959) e Mishra e Tripathi (1971) destacam-se por obter pontos com erros percentuais médios absolutos menores que 25% na geometria anular III com as três equações de diâmetro hidráulico e utilizando o modelo reológico *power law*, assim as geometrias anular I e II não foram analisadas por não ter sido alcançado o regime turbulento na análise dos dados experimentais, devido as limitações da bomba.

Analisando o escoamento da pasta 3 na temperatura de 25°C, Tabela 7, nota-se que as equações de Ryan e Jonhson (1959) e Mishra e Tripathi (1971) obtiveram pontos com erros percentuais médios absolutos menores que 25% na geometria anular III e com as equações DH1 e DH3, utilizando o modelo reológico *power law*. Como o modelo reológico de Herschel-Buckley, foram obtidos baixos desvios nas geometrias circular e anular I e II com as três equações do diâmetro hidráulico.

Na Tabela 8, foram apresentados os resultados do escoamento da pasta 3 na temperatura de 60°C, pode-se inferir que, utilizando o modelo reológico *power law*, a equação de Jonhson (1959) e Mishra e Tripathi (1971) obtiveram pontos com erros percentual médio absoluto menor que 25% nas geometrias anular I e III praticamente com as três equações de diâmetro hidráulico. Com o modelo reológico Herschel-Buckley, os mesmos desvios foram observados na geometria circular anular I.

De maneira geral, as equações de Thomas (1963) e Craft (1962) obtiverem elevados erros percentuais médios absolutos em todos os casos observados. As equações de Ryan e Jonhson (1959) e Mishra e Tripathi (1971) obtiveram bom desempenho ao descrever o Reynolds crítico utilizando os modelos reológicos *power law* e Herschel-Buckley.

Silvia *et. al.* (1989) ao analisar as equações de Reynolds crítico, destaca a equação de Hanks (1963) como a melhor equação utilizada pelo modelo de Bingham. Paraíso (2011) conclui que, de forma geral, as equações de Ryan e Jonhson (1959) e Mishra e Tripathi (1971) apresentaram os melhores resultados.

MODELO	REYNOLDS	CIRCULAR -	ANULAR I			ANULAR II			ANULAR III			DESVIO
	CRÍTICO		DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3	PADRÃO
POWER	Ryan & Jonhson (1959)	41,0	-	-	-	-	-	-	18,0	4,24	15,25	13,4
LAW	Mishra e Tripathi (1971)	39,8	-	-	-	-	-	-	18,8	4,93	16,01	12,6
BINGHAM	Hanks (1963)	1,0	-	-	-	-	-	-	154,0	107,52	143,96	60,6
	Thomas (1963)	82,0	-	-	-	-	-	-	83,0	82,59	82,59	0,4
	Craft. (1962)	96,0	-	-	-	-	-	-	96,0	96,37	96,35	0,2
HERSCHEL - BUCKLEY	Ryan & Jonhson (1959)	10,3	-	-	-	-	-	-	83,6	55,64	77,87	28,8
	Mishra e Tripathi (1971)	10,8	-	-	-	-	-	-	82,4	54,58	76,65	28,1

Tabela 6: Erros percentuais absolutos para as equações de Reynolds crítico para dos modelos de *power law*, Bingham e Herschel-Buckley na temperatura de 15°C. Pasta 3.

Tabela 7: Erros percentuais absolutos para as equações de Reynolds crítico para dos modelos de *power law*, Bingham e Herschel-Buckley na
temperatura de 25°C. Pasta 3.

MODELO	REYNOLDS CRÍTICO	CIRCULAR -	ANULAR I			ANULAR II			ANULAR III			DESVIO
			DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3	PADRÃO
POWER	Ryan & Jonhson (1959)	36,8	83,89	84,83	84,60	57,24	61,41	87,00	18,9	27,30	20,60	26,9
LAW	Mishra e Tripathi (1971)	35,4	80,68	81,81	81,53	55,71	60,01	86,54	17,1	25,63	18,78	26,6
BINGHAM	Hanks (1963)	4,0	18,60	2,38	2,44	63,21	33,64	53,31	114,0	75,43	106,04	39,9
	Thomas (1963)	79,0	85,92	85,92	85,92	87,78	87,78	87,78	83,0	82,66	82,66	2,8
	Craft. (1962)	96,0	97,09	97,10	97,10	97,44	97,46	97,45	96,0	96,40	96,38	0,6
HERSCHEL - BUCKLEY	Ryan & Jonhson (1959)	10,2	1,05	6,26	1,54	2,05	13,59	3,00	47,9	25,76	43,38	16,7
	Mishra e Tripathi (1971)	10,6	3,55	6,41	1,70	1,35	14,18	3,67	46,9	24,91	42,41	16,1

MODELO	REYNOLDS		A	ANULAR I			ANULAR II			ANULAR III		
	CRÍTICO	CIRCULAR	DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3	PADRÃO
POWER	Ryan & Jonhson (1959)	33,3	17,13	24,86	23,00	41,16	46,64	42,93	19,86	27,42	21,37	10,0
LAW	Mishra e Tripathi (1971)	30,5	13,66	21,71	19,78	38,69	44,41	40,54	16,69	24,54	18,26	10,4
BINGHAM	Hanks (1963)	12,0	172,75	123,27	134,67	79,88	47,56	69,06	105,99	69,14	98,29	43,7
	Thomas (1963)	76,0	80,52	80,52	80,52	83,33	83,33	83,33	79,23	79,23	79,23	2,2
	Craft. (1962)	94,0	95,92	95,94	95,94	96,53	96,55	96,54	95,69	95,71	95,69	0,7
HERSCHEL - BUCKLEY	Ryan & Jonhson (1959)	22,2	40,72	19,11	24,17	46,32	22,11	38,29	74,02	45,40	68,11	18,3
	Mishra e Tripathi (1971)	22,6	39,76	18,30	23,32	45,54	21,46	37,55	73,06	44,59	67,18	18,1

Tabela 8: Erros percentuais absolutos para as equações de Reynolds crítico para dos modelos de *power law*, Bingham e Herschel-Buckley na
temperatura de 60°C. Pasta 3.

4.2.4 Diâmetro hidráulico

As avaliações de fator de atrito foram feitas com os dados em obtidos em regime laminar. A seguir foram apresentados gráficos de vazão versus diferencial de pressão, onde são discutidos erros apresentados pelas equações de diâmetro hidráulico. As análises feitas foram aferidas para todos os escoamentos. Os dados não apresentados foram anexados. Os erros percentuais absolutos foram calculados através da Equação 40.

$$Erro = \left| \frac{DH_{Exp} - DH_{Teor}}{DH_{Exp}} \right| 100 \tag{40}$$

Para a geometria anular I foi detalhado o escoamento aplicando o modelo Bingham a 15°C Figura 31. Foram obtidos oito dados experimentais no regime laminar. A equação DH1 obteve menor erro percentual médio absoluto, 29,03%, seguido da DH3, 46,58%, e DH2, 51,6%.

Figura 31: Análise das equações de diâmetro hidráulico. Escoamento da pasta 3 na geometria anular I aplicando o modelo de Bingham a 15°C.

Para a geometria anular II foi detalhado o escoamento aplicando o modelo *power law* a 60°C, Figura 32. Foram obtidos nove dados experimentais no regime laminar. Nota-se que a equação DH1 obteve menor erro percentual médio absoluto, 19,55%, seguido da equação DH3 com 20,51% e DH2 com 32,29%.

Figura 32: Análise das equações de diâmetro hidráulico. Escoamento da pasta 3 na geometria anular II aplicando o modelo de *power law* a 60°C.

Para a geometria anular III, foi detalhado o escoamento aplicando o modelo de Bingham na temperatura de 15°C, Figura 33. Foram obtidos oito dados experimentais no regime laminar. Nota-se que a equação DH3 obteve menor erro percentual médio absoluto, 33,91%, seguido da equação DH2 com 51,64% e DH1 com 67,51%.

Figura 33: Análise das equações de diâmetro hidráulico. Escoamento da pasta 3 na geometria anular III aplicando o modelo Herschel-Buckley a 25°C.

Na Tabela 9 foram apresentados os erros percentuais médios absolutos das equações dos diâmetros hidráulicos aplicadas nos anulares para os três modelos reológicos. Com os valores dos erros percentuais absolutos foram calculados os erros percentuais médios absolutos, onde os menores que 25% foram considerados satisfatórios e destacados em negrito.

Através da Tabela 9 pode-se concluir que a equação de diâmetro hidráulico DH1 obteve, de maneira geral, melhores resultados nas três temperaturas e geometrias utilizando o modelo reológico *power law*, onde nas três geometrias obteve os erros percentuais médios absolutos menores que 25%, na temperatura de 15°C obteve nas geometrias anular I e II e na temperatura de 25°C na geometria anular III. A equação do diâmetro hidráulico DH3 obteve pontos satisfatórios unicamente na temperatura de 60°C. Utilizando o modelo reológico *power law*, obteve nas três geometrias anulares e utilizando os modelos reológicos Bingham e Herschel-Buckley obteve na geometria anular I.

A equação DH2 obteve-se alguns pontos de erros percentuais médios absolutos menores que 25% para o medelo Herschel-buckley nas três geometrias anulares.

Silvia *et. al.*(1989) e Paraíso (2011) concluem que a equação de diâmetro hidráulico DH1 foi a que melhor descreveu os dimensionamentos dos anulares.

	T(°C) -	P	OWER LA	W	В	SINGHAM		HERSCHEL - BUCKLEY			
ANULAK		DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3	
	15	14,80	30,70	26,30	29,03	51,67	46,58	31,54	53,85	49,18	
Ι	25	30,04	50,32	42,63	101,52	35,34	49,81	104,13	37,34	51,57	
	60	14,52	18,34	15,07	77,12	21,06	33,05	45,91	12,42	15,65	
	15	18,12	31,46	20,97	118,73	46,35	92,93	71,35	18,12	52,56	
II	25	29,05	65,89	57,98	114,32	49,12	33,16	86,09	29,36	65,40	
	60	19,55	32,39	20,51	119,98	48,49	94,20	46,22	54,54	41,91	
	15	19,47	61,41	48,00	99,24	53,27	35,15	55,76	55,61	39,21	
III	25	21,39	59,57	45,98	113,25	48,99	29,50	67,51	51,64	33,91	
	60	17,86	27,21	17,66	112,40	44,05	98,41	86,03	25,65	70,08	
	15	19,47	61,41	48,00	99,24	53,27	35,15	55,76	55,61	39,21	
MÉDIA	25	26,83	58,59	48,86	109,70	44,48	37,49	85,91	39,45	50,29	
	60	17,31	25,98	17,75	103,16	37,86	75,22	59,39	30,87	42,55	
Desvio Padrão		5,4	16,2	15,3	27,5	9,6	27,7	22,1	16,0	15,5	

Tabela 9: Erros percentuais médios absolutos dos diâmetros hidráulicos para o modelo reológicos de *power law*, Bingham e Herschel-
Buckley para o escoamento da pasta 3.

4.3 Fator de atrito

As correlações de fator de atrito apresentam dependências com o regime de escoamento, os modelos reológicos e as geometrias. Os trechos experimentais, discutido no capítulo Materiais e Métodos, foram compostos de geometrias circulares e anulares. Para o escoamento nas geometrias anulares formam analisadas equações de diâmetro hidráulico, com isso, para as essas geometrias as correlações de fator de atrito também teve dependência com as equações de diâmetro hidráulico. As análises foram feitas através de gráficos log-log de Fator de atrito versus número de Reynolds, onde foram plotados os dados experimentais e os dados calculados por equações da literatura. Os erros percentuais absolutos foram calculados através da Equação 41.

$$Erro = \left| \frac{f_{Exp} - f_{Teor}}{f_{Exp}} \right| 100 \tag{41}$$

Com os dados de erros foram plotados gráficos de erros versus fator de atrito, podendo-se analisar pontualmente cada dado obtido experimentalmente, e construídas tabelas de erros percentuais médios absolutos, tendo-se uma visão geral dos dados.

4.3.1 Análise de gráficos de correlações de fator de atrito

Devido à geração de muitos gráficos foram selecionados quatro escoamentos para serem exemplificados. Em cada escoamento, foram apresentados um gráfico log-log de fator de atrito versus número de Reynolds e um gráfico de erro. Os dados referentes aos demais escoamentos foram postos em anexo.

No regime laminar o numero de Reynolds apresentou variação de 200 a 1800. No regime turbulento o número de Reynolds variou entre 6500 e 10100, Figura 34. Através do gráfico de erros, Figura 35, percebe-se que todas as correlações, exceto a de Churchill (1977), apresentaram erros médios absolutos menores que 25%. Entretanto destaca-se, neste caso, a equação de DM Gomes (1987) com os menores erros.

Figura 34: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria circular a 15°C. Usando o modelo *power law*.

Figura 35: Gráfico de fator de atrito versus erro percentual. Escoamento da pasta 3 na geometria circular a 15°C. Utilizando o modelo *power law*.

Para o escoamento na geometria anular I, utilizou-se o modelo reológico Herschel-Buckley, na temperatura de 60°C e equação DH2, Figura 36. Foram obtidos 7 pontos no regime laminar com o número de Reynolds variando de 280 a 1900. Os valores obtidos pelas correlações de fator de atrito para o regime turbulento apresentaram número de Reynolds entre 2500 e 9050. A equação de Elis e George (1977) apresentou os melhores resultados, sendo observado também no gráfico de erros, Figura 37, onde apresentou os erros mais baixos, em sua maioria menor que 5%.

Figura 36: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria anular I, DH2, a 60°C. Usando o modelo Herschel-Buckley.

Figura 37: Gráfico de fator de atrito versus erro percentual. Escoamento da pasta 3 na geometria anular I, DH2, a 60°C. Usando o modelo Herschel-Buckley.

Para o escoamento na geometria anular II, Figura 38, foi utilizado o modelo reológico *power law*, na temperatura de 60°C e com a equação DH2. O número de Reynolds variou entre 280 e 3750. Os valores de fator de atrito obtidos experimentalmente foram maiores que os obtidos pela equação para o regime laminar. No regime turbulento o número de Reynolds ficou na faixa de 3700 e 16000. As correlações de DM Gomes (1987) e Ellis e George (1977) apresentaram valores de fator de atrito mais próximos dos experimentais. Através do gráfico de erros, Figura 39, pode-se perceber que todas as correlações de fator de atrito apresentaram erros percentuais absolutos menores que 25%, exceto a correlação de Churchill (1977).

Figura 38: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria anular II, DH2, a 60°C. Usando o modelo *power law*.

Figura 39: Gráfico de fator de atrito versus erro percentual. Escoamento da pasta 3 na geometria anular II, DH2, a 60°C. Utilizando o modelo *power law*.

Através da Figura 40 pode-se analisar o escoamento na geometria anular III, onde foi utilizado o modelo reológico Herschel-Buckley na temperatura de 60°C e equação DH2. No regime laminar o número de Reynolds variou entre 250 e 1700. Os dados experimentais obtiveram menores valores de fator de atrito. Para o regime turbulento o número de Reynolds ficou na faixa de 2300 e 7800. Através do gráfico de erros, Figura 41, nota-se que a equação de Ellis e George (1977) obteve menores erros.

Figura 40: Gráfico de número de Reynolds versus fator de atrito. Escoamento da pasta 3 na geometria anular III, DH2, a 60°C. Utilizando o modelo Herschell-Buckley.

Figura 41: Gráfico de fator de atrito versus erro percentual. Escoamento da pasta 3 na geometria anular III, DH2, a 60°C. Utilizando o modelo Herschell-Buckley.

4.3.2 Análise das tabelas de correlações de fator de atrito

Nas tabelas 10, 11 e 12 são feitas análises mais generalizadas, onde através dos valores de erros percentuais absolutos, Equação 41, foi obtida uma média referente às geometrias. Para as geometrias anulares foram obtidas três médias, uma para cada equação de diâmetro hidráulico. Nas tabelas também foi apresentado o desvio padrão as correlações.

Regime laminar

Analisando o escoamento no regime laminar nota-se que, de modo geral, o modelo reológico *power law* obteve melhor desempenho nas três temperaturas, sendo que no escoamento na temperatura de 60°C, apresentado na Tabela 12, obteve melhores resultados. Em seguida, o modelo de Herschel-Bockley, se destacando no escoamento a 15°C na geometria anular II, Tabela 10, onde obteve todos os pontos com resultados satisfatórios.

Regime turbulento

A partir dos resultados de erros percentuais médios absolutos apresentados na Tabela 10 para o escamento da pasta a temperatura de 15°C, pode-se inferir que a correlação de Ellis e George (1977) obteve melhores resultados, sendo apresentando resultados satisfatórios para os três modelos. As geometrias anulares I e II, temperatura de 15°C, não obtiveram pontos experimentais no regime turbulento. Quando os dados experimentais foram plotados no gráfico de vazão versus diferencial de pressão só foi possível traçar a reta R1, regime laminar.

Analisando os erros médios de fator de atrito para o escoamento da pasta 3 na temperatura de 25°C apresentado na Tabela 11 as geometrias circulares e anular II e II com a equação DH2 obtiveram quase todos os pontos com erros médios menores que 25%. A correlação de Ellis e George (1977) obteve erros médios menores que 25% utilizando ao três modelos reológicos, sendo a única no modelo de Herschel-Buckley.

Os erros percentuais médios absolutos das correlações de fator de atrito na temperatura de 60°C foram apresentados na Tabela 12. Neste escoamento aplicando o modelo *power law*, todas as equações de fator de atito exceto a de Churchill (1977) apresentaram valores de erros médios satisfatórios para todas as geometrias e praticamente todos as equações de diâmetro hidráulico. As correlações de Darby e Melson (1981) e Darby *et. al.* (1992) foram as melhores utilizando o modelo Bingham.

MODELOS	CORRELAÇÃO DE		Α	NULAR	Ι	ANULAR II			ANULAR III			DESVIO
REOLÓGICOS	FAROR DE ATRITO	CIRCULAR -	DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3	PADRÃO
	Laminar	15,83	35,4	11,5	10,7	18,1	31,5	21,0	19,47	61,41	48,00	19,2
	DM Gomes	11,43	-	-	-	-	-	-	8,40	86,89	84,42	37,9
POWER	OW Gomes	16,54	-	-	-	-	-	-	6,97	87,47	85,09	37,4
LAW	FS Gomes	15,37	-	-	-	-	-	-	6,78	85,81	82,99	36,8
	Ellis e George	13,85	-	-	-	-	-	-	9,49	87,83	85,21	37,5
	Churchill	29,11	-	-	-	-	-	-	37,57	81,40	75,03	22,7
	Laminar	33,77	29,0	51,7	46,6	118,7	46,4	92,9	99,24	53,27	34,45	26,6
	Darby e Melson	16,02	-	-	-	-	-	-	8,91	89,97	88,01	38,4
DINCHAM	Tomita	41,54	-	-	-	-	-	-	66,18	79,37	74,48	14,6
DINGHAM	Darby et. al.	33,05	-	-	-	-	-	-	28,27	92,13	90,60	30,4
	Ellis e George	6,02	-	-	-	-	-	-	19,62	84,70	80,78	35,3
	Churchill	61,35	-	-	-	-	-	-	52,53	66,62	52,99	5,9
	Laminar	27,44	31,5	53,9	49,2	73,3	18,1	22,6	55,76	55,61	39,21	11,9
	DM Gomes	35,5	-	-	-	-	-	-	36,3	84,07	80,66	23,3
HERSCHEL	OW Gomes	36,9	-	-	-	-	-	-	36,8	83,56	80,29	22,6
- BUCKLEY	FS Gomes	42,7	-	-	-	-	-	-	46,9	81,31	77,38	17,4
	Ellis e George	7,9	-	-	-	-	-	-	6,9	86,12	82,83	38,6
	Churchill	55,3	-	-	-	-	-	-	38,3	73,62	63,64	12,9

 Tabela 10: Erros percentuais médios absolutos das correlações de fator de atrito utilizando o modelo reológicos de *power law*, Bingham e Herschel-Buckley no escoamento da pasta 3 na temperatura de 15°C.

MODELOS	CORRELAÇÃO DE		ANULAR I		ANULAR II			ANULAR III			DESVIO	
REOLÓGICOS	FAROR DE ATRITO	CIRCULAR	DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3	PADRÃO
	Laminar	16,28	30,04	50,32	42,63	29,05	65,89	57,98	21,39	59,57	45,98	16,2
	DM Gomes	12,78	31,70	43,81	41,95	10,71	85,86	83,47	4,43	87,06	84,60	32,3
POWER	OW Gomes	18,96	45,38	55,15	53,60	1,69	87,04	84,84	7,79	88,00	85,69	32,2
LAW	FS Gomes	18,39	43,16	53,66	51,83	3,95	85,41	82,87	4,10	86,48	83,75	31,7
	Ellis e George	14,01	14,11	24,16	22,22	6,80	86,18	83,74	5,35	87,54	84,88	35,3
	Churchill	22,35	22,45	5,90	9,15	55,70	82,78	78,74	40,51	83,37	77,76	30,0
	Laminar	28,51	101,52	35,34	49,81	114,32	49,12	33,16	113,25	48,99	28,69	33,4
	Darby e Melson	18,46	17,50	6,88	6,26	16,90	87,40	85,11	4,33	89,15	86,98	37,3
вілснам	Tomita	31,73	104,27	59,47	67,43	111,81	74,08	68,65	78,71	78,04	72,73	21,1
DINGHAM	Darby et. al.	35,99	9,10	26,93	24,16	8,29	90,11	88,32	22,06	91,49	89,78	34,6
	Ellis e George	5,77	47,20	15,58	21,07	51,94	80,80	76,53	28,46	83,82	79,61	28,5
	Churchill	51,47	82,65	52,11	57,05	87,95	58,28	44,82	55,32	66,67	52,67	13,4
	Laminar	25,89	104,13	37,34	51,57	46,22	54,54	41,91	67,51	51,64	33,91	20,8
	DM Gomes	30,14	27,16	53,62	63,35	59,15	80,23	76,68	42,60	83,19	79,62	19,8
HERSCHEL	OW Gomes	31,62	42,05	58,65	68,79	57,28	79,98	76,36	41,70	82,92	79,42	17,6
- BUCKLEY	FS Gomes	35,32	40,65	67,79	78,96	67,19	77,26	73,00	51,10	80,69	76,51	15,7
	Ellis e George	8,00	7,18	12,04	17,25	25,40	83,03	79,59	10,30	85,52	82,06	34,3
	Churchill	45,13	27,87	54,69	59,00	75,09	68,74	59,81	56,80	74,73	64,92	13,5

 Tabela 11: Erros percentuais médios absolutos das correlações de fator de atrito utilizando o modelo reológicos de *power law*, Bingham e

 Herschel-Buckley no escoamento da pasta 3 na temperatura de 25°C.

MODELOS	CORRELAÇÃO DE		ANULAR I		ANULAR II			ANULAR III			DESVIO	
REOLÓGICOS	FAROR DE ATRITO	CIRCULAR -	DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3	PADRÃO
	Laminar	16,33	14,52	18,34	15,07	19,55	32,39	20,51	17,86	27,21	17,66	5,4
	DM Gomes	7,30	14,85	16,62	13,63	16,65	7,82	8,14	8,80	13,81	5,52	4,0
POWER LAW	OW Gomes	16,73	12,30	25,74	21,42	4,34	17,57	3,63	4,25	23,12	7,65	8,0
	FS Gomes	16,84	9,52	22,17	17,55	7,00	15,57	1,34	2,06	21,41	5,20	7,4
	Ellis e George	7,72	16,53	16,98	14,54	16,22	7,72	8,51	10,26	12,79	7,98	3,7
	Churchill	32,26	49,71	25,90	31,30	62,77	28,67	50,90	52,01	20,63	45,40	13,2
	Laminar	40,01	77,12	21,06	33,05	119,98	48,49	94,20	112,40	44,05	98,41	33,9
	Darby e Melson	9,19	24,90	10,01	11,56	25,50	4,30	16,37	16,02	10,48	11,45	6,5
вілснам	Tomita	41,17	86,00	43,09	52,74	118,43	67,04	101,13	100,58	52,60	88,82	26,0
DINGHAM	Darby et. al.	28,27	10,01	24,44	19,74	3,58	23,44	8,70	9,15	29,76	14,62	8,7
	Ellis e George	11,22	61,41	24,26	32,04	57,57	21,18	45,36	45,11	11,54	36,70	16,9
	Churchill	61,05	111,61	47,80	59,23	93,28	63,62	84,84	90,71	56,05	84,07	19,4
	Laminar	38,24	45,91	12,42	15,65	86,09	29,36	65,40	86,03	25,65	70,08	26,4
	DM Gomes	41,00	57,84	24,31	31,94	100,86	56,26	86,14	82,09	44,62	76,05	24,0
HERSCHEL	OW Gomes	41,30	56,16	22,74	30,34	104,96	59,19	89,81	85,61	47,01	79,28	25,9
- BUCKLEY	FS Gomes	42,40	63,83	27,70	35,89	116,76	67,25	100,16	96,56	53,75	88,94	28,6
	Ellis e George	9,70	23,73	7,06	8,83	46,06	13,61	35,24	33,64	6,65	28,76	13,4
	Churchill	54,50	74,08	44,94	51,37	105,11	64,93	94,42	88,52	53,36	83,49	19,7

 Tabela 12: Erros percentuais médios absolutos das correlações de fator de atrito utilizando o modelo reológicos de *power law*, Bingham e

 Herschel-Buckley no escoamento da pasta 3 na temperatura de 60°C.

As variações dos erros médios obtidos pelas correlações levaram a valores de desvio padrão elevados, salvo alguns casos que, independente dos resultados, obtiveram desvio baixo.

Fazendo uma análise geral de todos os resultados de erros percentuais médios absolutos menores que 25% para as correlações testadas no regime turbulento, nas três temperaturas, três modelos reológicos, quatro geometrias e três equações de diâmetro hidráulico para as geometrias anulares verifica-se que a correlação de DM Gomes (1987) obteve erros abaixo em 33,3% dos casos testados, OW Gomes (1987) 29,2%, FS Gomes (1987) 31,2%, Ellis e George (1977) 55,6%, Churchill (1977) 8,3%, Darby e Melson (1981) 75%, Dardy *et. al.*(1992) 50%, e a de Tomita (1959) 0%.

As correlações de Darby e Melson (1981), Dardy *et. al.*(1992), e a de Tomita (1959) foram correlações desenvolvidas para serem aplicadas especificamente no modelo reológico Bingham, como exposto na revisão bibliográfica, deste modo suas análises limitam-se a este modelo. A correlação de Darby e Melson (1981) apresentou maior percentual de valores de erros médios absolutos menores que 25%, utilizando o modelo Bingham. As correlações de Gomes foram desenvolvidas para serem aplicadas com os modelos reológicos *power plaw* e Herschel-Buckley e as correlações de Ellis e George (1977) e Churchill (1977) para serem aplicadas com os três modelos reológicos. Contudo a correlação de Ellis e George (1977) obteve melhores resultados nos modelos *power law*, 75,0% e Herschel-Buckley, 54,2%. As análises feitas nos modelos reológicos contabilizaram os valores de erros percentuais obtidos em cada modelo separadamente.

Com base no exposto, a correlação de Ellis e George (1977) foi a melhor correlação de fator de atrito para o escoamento da pasta 3, pois obteve maior quantidade de pontos com valores de erros percentuais médios absolutos menores que 25% dentre as correlações que foram aplicadas nos três modelos reológicos, 55,6% e quando aplicada aos modelos de *power law*, e Herschel-Buckley.

Silva *et. al.*(1989) conclui que também a equação de Ellis e George (1977) apresentou os melhores resultados, sendo também concluído por Paraíso (2011).

4.4 Análises das Três Pastas

Neste item foi discutido o escoamento das três pastas de cimento. A pasta de cimento 3 foi discutida individualmente nesta dissertação, contudo alguns dados foram repetidos para que fossem realizadas as análises desejadas. A pasta 1 foi discutida na dissertação de Paraíso (2011) e os dados das três pastas foram disponibilizados no anexo.

A seguir foi feito um trabalho estatístico com as equações utilizadas para análise de perda de carga no escoamento das pastas de cimento. As equações avaliadas apresentavam dependência ente si, sendo assim foi traçada uma linha de análise conforme a dependência de cada equação. Seguindo esta linha foi definido inicialmente o melhor modelo reológico, a melhor equações do diâmetro hidráulico, a melhor correlação de fator de atrito e por fim a melhor equação de número de Reynolds crítico.

4.4.1 Modelo reológico

A metodologia aplicada para a determinação do melhor modelo reológico no escoamento das três pastas de cimento analisadas no projeto de cimentação, feito em parceria com a Petrobrás, seguiu os mesmos critérios utilizados para a análise da pasta de cimento 3. Para as análises da Tabela 13, o modelo que obteve índice de correlação mais próximo da unidade, destacado em negrito, foi o que melhor descreveu o comportamento reológico do fluido.

						\mathbf{R}^2				
DUTOS	T (% C)		PASTA 1		J	PASTA 2			PASTA 3	
DUIUS	I(C)	Power Law	Bingham	Herschel- Buckley	Power Law	Bingham	Herschel- Buckley	Power Law	Bingham	Herschel- Buckley
	15	0,9249	0,9924	0,9988	0,9105	0,9972	0,9990	0,9716	0,9973	0,9998
CIRCULAR	25	0,8775	0,9952	0,9983	0,8245	0,9969	0,9972	0,9673	0,9978	0,9999
	60	0,9153	0,9772	0,9981	0,8999	0,9854	0,9938	0,9570	0,9970	0,9998
	15	0,9303	0,9969	0,9988	0,8940	0,9947	0,9960	-	-	-
ANULAK	25	0,8810	0,9966	0,9991	0,8319	0,9943	0,9949	0,8319	0,9943	0,9949
I	60	0,9505	0,9130	0.9960	0,8691	0,9822	0,9901	0,9693	0,9936	0,9965
	15	0,9180	0,9978	0,9994	0,8926	0,9990	0,9991	-	-	-
ANULAK II	25	0,8905	0,9960	0,9978	0,8644	0,9987	0,9990	0,9738	0,9930	0,9999
11	60	0,9135	0,9298	0,9653	0,8192	0,9906	0,9919	0,9582	0,9967	0,9993
ANULAR III	15	0,9269	0,9986	0,9996	0,8952	0,9969	0,9987	0,9906	0,9936	0,9998
	25	0,8979	0,9965	0,9991	0,8138	0,9950	0,9953	0,9815	0,9925	0,9998
	60	0,9452	0,9601	0,9963	0,8725	0,9677	0,9837	0,9636	0,9962	0,9997

Tabela 13: Tabela 16: Dados de coeficiente de correlação, R², para os modelos relógicos *power law*, Bingham e Herschel-Buckley nas temperaturas de 15, 25 e 60°C e nas geometrias circular e anulares, para pastas de cimento 1, 2 e 3.

O modelo de Herschel-Buckley obteve todos os índices de correlação mais próximos da unidade na análise das três pastas, nas três temperaturas e nas quatro geometrias de escoamento, Tabela 13.

4.4.2 Diâmetros hidráulicos

A determinação da melhor equação do diâmetro hidráulico foi feita utilizando o modelo reológico que apresentou melhores resultados, o modelo reológico Herschel-Buckley. O cálculo de erro foi feito através da Equação 40, onde com os dados experimentais e teóricos foram obtidos os valores dos erros percentuais médios absolutos para as equações de diâmetro hidráulico. Foram considerados satisfatórios os erros percentuais médios absolutos menores que 25% (SILVA, *et. al.*, 1981).

As análises das equações de diâmetro hidráulico foram feitas calculando as percentagens de pontos que apresentavam valores de erros percentuais médios menores que 25%, Equação 42.

$$\% DH = \frac{N \acute{u}mero\ de\ erros\ menres\ que\ 25\%}{N \acute{u}mero\ Total\ de\ erros}\ x100$$
(42)

Também se definiu a "melhor equação" para cada pasta, esta foi determinada através dos pontos que apresentaram menores valores de erro percentual médio absoluto. Foi determinada a fração do número de pontos com menor valor de erro percentual médio absoluto pelo número de pontos de cada equação e multiplicado por 100 para obter o percentual, sendo a melhor equação a que apresentou maior percentual.

Na Tabela 14 foram dispostos os valores dos erros percentuais médios absolutos obtidos através das equações de diâmetro hidráulico referentes às geometrias e às temperaturas. Foram apresentados também os valores o desvio padrão, o percentual de pontos com erros menores que 25% para cada equação e o percentual de menores pontos (melhor equação).

Analisando o escoamento da pasta 1, Tabela 14, as três equações de diâmetro hidráulico apresentaram, de forma geral, bons resultados. A equação DH3 obteve 88,9% dos pontos com valores de erros médios absolutos menores que 25%, contudo mesmo sendo o percentual mais alto a equação DH2 obteve 66,7% dos pontos com menor valor de erro médio, sendo considerada a melhor equação.

A correlação DH2 obteve melhores resultados para o escoamento das pastas 2 e 3. Com a pasta 2 DH2 obteve 66,7% dos pontos com valores de erro menor que 25% e a mesma percentagem para pontos com menores valor de erro, com a pasta 3 foram 22,2% para os pontos om erros menores que 25% e 28,6% para os menores valores de erros. Observa-se que a variação dos erros percentuais médios absolutos levou também a altos desvios padrão.

Com os dados de erros percentuais médios absolutos das equações de diâmetro hidráulico foram feitas análises individuais e gerais dos escoamentos. A Tabela 14 apresenta a análise individual para as três pastas. Para a análise geral foi construído um histograma, Figura 42, com os dados percentuais de pontos calculados pela equação de diâmetro hidráulico com valores de erros percentuais médios absolutos menores que 25%, onde se pode analisar o escoamento das três pastas em conjunto.

	FOUACÕES DE	DEANULAR I		A	ANULAR II			ANULAR III					
PASTAS	DIÂMETRO HIDRÁULICO	15 °C	25°C	60°C	15 °C	25°C	60°C	15 °C	25°C	60°C	PADRÃO	<25%	MELHOR EQUAÇÃO
	DH1	73,30	59,10	15,20	33,50	11,90	18,90	24,10	11,80	12,40	21,3	66,6	11,1
1	DH2	19,30	15,50	10,50	12,00	27,10	12,40	13,70	25,10	22,70	5,8	77,7	66,7
	DH3	30,90	22,40	10,00	18,60	9,00	13,50	15,30	9,30	12,80	6,8	88,9	44,4
	DH1	110,60	104,10	95,90	61,66	49,95	45,05	57,95	50,70	37,99	26,0	0,0	0,0
2	DH2	39,80	37,30	37,20	8,45	2,37	5,35	9,25	5,24	5,64	15,2	66,7	66,7
	DH3	56,40	51,60	49,90	41,58	32,68	27,55	47,82	40,25	29,75	9,7	0,0	0,0
	DH1	31,54	104,13	45,91	71,35	86,09	46,22	55,76	67,51	86,03	20,8	0,0	0,0
3	DH2	53,85	37,34	12,42	18,12	29,36	54,54	55,61	51,64	25,65	15,4	22,2	28,6
	DH3	49,18	51,57	15,65	52,56	65,40	41,91	39,21	33,91	70,08	15,5	11,1	0,0

Tabela 14: Erros percentuais médios absolutos dos diâmetros hidráulicos para o modelo de Herschel-Buckley. Pastas 1, 2 e 3.

Na análise geral, Figua 42, para o cálculo do percentual de pontos de diâmetro hidráulico com erros percentuais menores que 25% foram considerados os números totais de pontos calculados pelas equações do diâmetro hidráulico no escoamento das três pastas. Observa-se que a equação DH1 obteve 22,2%, equação DH2 obteve 55,5% e a equação DH3 obteve 33,3%.

Figura 42: Percentual de pontos com erros percentuais médios absolutos menores que 25% para as equações de diâmetro hidráulico.

Foi apresentada também em histograma, Figura 43, com a equação que melhor representou o escoamento das três pastas. Nesta representação foi determinado o percentual e pontos com menores erros. Foram utilizados os pontos totais obtidos no cálculo de erro percentual médio absoluto das três pastas. A equação DH1 não obteve pontos com menores valores de erro percentual médio absoluto, a equação DH2 obteve 23,5% e a equação DH3 obteve 2,9%, Figura 43.

Figura 43: Percentual de pontos com menores valores de erros percentuais médios absolutos para a equação de diâmetro hidráulico.

Portanto pode-se considerar que a equação DH2 foi a que melhor representou o diâmetro hidráulico nas geometrias anulares no escoamento das três pastas de cimento, obtendo 55 de percentual de pontos com valores de erro percentual médio absoluto menor que 25%, e 23,5 de percentual de pontos com menor valor de erro percentual médio absoluto.

Vale ressaltar que esses resultados destas análises foram, exclusivamente, obtidos utilizando o modelo reológico Herschel-Buckley, caso utilize-se outro modelo esses resultados mudam.

4.4.3 Fator de atrito

O cálculo do fator de atrito apresenta dependência como o modelo reológico e com o número de Reynolds. Sendo que o número de Reynolds apresenta dependência com o diâmetro da geometria de escoamento. Deste modo as correlações de fator de atrito testadas, Quadro 3, apresentavam dependência com o modelo reológico e o diâmetro de escoamento. Para as geometrias circulares o diâmetro foi medido com o paquímetro, porém para as geometrias anulares foram testadas equações de diâmetro hidráulico.

A definição da correlação de fator de atrito que descreveu melhor os escoamentos das pastas de cimento, portanto, foi determinada através dos parâmetros dos modelos reológicos que obteve melhores resultados e da equação do diâmetro hidráulico que melhor descreveu as regiões de escoamento das geometrias anulares. Assim baseado nos resultados dos itens anteriores, as melhores equações foram o modelo reológico Herschel-Bucley e a equação de diâmetro hidráulico DH2. Os erros percentuais médios absolutos das correlações de fator de atrito foram obtidos através equação de erro, da Equação 41. As análises das correlações de diâmetro hidráulico foram feitas calculando as percentagens dos pontos que apresentaram valores de erro percentual médio absoluto menor que 25%, Equação 43.

$$\% Correlação de fator de atrito = \frac{N úmero de erros menores que 25\%}{N úmero Total de erros} x100$$
(43)

Desta forma, obteve-se a fração de números de pontos calculados pela correlação de fator de atrito que obtiveram valores de erros percentuais médios absolutos menores que 25% sobre o total de pontos calculados pela correlação de fator de atrito com valores de erros percentuais médios e multiplicou-se a fração por 100 para obter o valor percentual.

Aqui também se definiu a "melhor equação" para cada pasta foi determinada através dos pontos que apresentaram menores valores de erro percentual médio absoluto. Foi determinada a fração do número de pontos com menor valor de erro percentual médio absoluto pelo número de pontos de cada correlação de fator de atrito e multiplicado por 100 para obter o percentual, sendo a melhor correlação de fator de atrito a que apresentou maior percentual de pontos com menores valores de erros percentuais médios.

Na tabela 15 foram dispostos os valores dos erros percentuais médios absolutos das correlações de fator de atrito utilizadas no escoamento das três pastas, onde é feita uma análise individual dos escoamentos. Foram apresentados também os valores o desvio padrão, o percentual de pontos com erros menores que 25% para cada correlação e o percentual de menores pontos, "melhor correlação". No escoamento da pasta 3 não foi possível alcançar o regime turbulento na temperatura de 15°C nas geometrias anular I e II, esses pontos não poderam ser analisados.

Na o escoamento da pasta 1, Tabela 15, foi observado que os pontos com erros percentuais médios absolutos ficaram bem distribuídos, abrangendo todas as geometrias e temperaturas. A correlação de Ellis e George (1977) obteve 100% dos pontos com erros menores médios que 25% e as correlações propostas por Gomes (1987) obtiveram praticamente os mesmos pontos com erros menores médios que 25%.

CORRELAÇÕES DE		C	IRCULA	AR	ANULAR I		Al	NULAR	II	ANULAR III			DES		MELHOR	
F	FAROR DE ATRITO	15 °C	25°C	60°C	15 °C	25°C	60°C	15 °C	25°C	60°C	15 °C	25°C	60°C	PADRÃO	<25%	COR. %
	DM Gomes	15,00	19,30	15,20	46,00	41,80	7,80	11,20	19,40	26,10	13,40	19,10	8,50	11,7	75,0	33,3
	OW Gomes	13,50	18,90	8,00	50,00	44,10	15,90	12,60	22,80	36,70	14,00	20,70	11,70	13,1	75,0	0,0
1	FS Gomes	13,80	17,40	7,90	58,70	50,40	14,00	15,90	25,70	36,70	14,30	22,10	11,80	15,5	66,7	8,3
	Ellis e George	7,80	7,00	10,80	11,20	4,80	9,50	19,70	15,20	12,90	22,70	12,10	10,20	4,9	100	50,0
	Churchill	29,10	28,50	39,10	48,10	44,20	39,80	21,40	26,80	10,30	23,90	28,50	28,30	10,1	25,0	8,3
	DM Gomes	20,6	33,0	21,5	30,8	53,6	75,4	19,5	52,0	36,1	21,2	47,5	24,1	16,7	41,7	0,0
	OW Gomes	22,3	36,8	18,7	34,4	58,6	72,8	24,7	59,7	37,9	23,7	54,5	20,2	17,6	41,7	0,0
2	FS Gomes	22,9	36,0	17,3	43,9	67,8	77,7	32,5	66,9	39,2	30,2	60,1	21,0	19,5	25,0	0,0
	Ellis e George	10,5	6,1	9,4	5,3	12,0	38,8	17,8	3,8	2,9	12,0	4,3	5,4	9,5	91,7	91,7
	Churchill	28,8	36,1	36,6	29,4	54,7	101,0	21,9	42,9	46,6	30,4	49,6	45,3	19,7	8,3	0,0
	DM Gomes	35,5	30,1	41,0	-	53,6	24,3	-	80,2	56,3	36,3	42,6	44,6	15,1	10,0	0,0
	OW Gomes	36,9	31,6	41,3	-	58,6	22,7	-	80,0	59,2	36,8	41,7	47,0	15,6	10,0	0,0
3	FS Gomes	42,7	35,3	42,4	-	67,8	27,7	-	77,3	67,3	46,9	51,1	53,8	14,8	10,0	0,0
	Ellis e George	7,9	8,0	9,7	-	12,0	7,1	-	83,0	13,6	6,9	10,3	6,7	22,3	90,0	90,0
	Churchill	55,3	45,1	54,5	-	54,7	44,9	-	68,7	64,9	38,3	56,8	53,4	8,7	0,0	0,0

Tabela 15: Erros percentuais das correlações do fator de atrito para o modelo de Herschel-Buckley para geometrias circular e anulares com diâmetro hidráulico DH2 e nas temperaturas 15, 25 e 60°C. Os números 1, 2 e 3 são referentes, respectivamente, às pastas 1, 2 e 3.

Assim sendo a equação de Ellis e George (1977) obteve 50% dos pontos com menores erros médios absolutos. No escoamento da pasta 2 foi observado as mesmas tendências das correlações obtidas na pasta 1, a correlação de Ellis e George (1977) obteve 97% dos erros médios menores que 25% e igual valor para o percentual de menores erros e as correlações propostas por Gomes (1987) obtiveram praticamente nas mesmas geometrias e temperaturas erros médios menores que 25%. No escoamento da pasta 3 a correlação de Ellis e George (1977) obteve os melhores resultados de erros médios menores que 25% e pontos com menores que 25%.

A análise de todos os pontos com valores de erros percentuais médios absolutos para as correlações de fator de atrito nos escoamentos das três pastas, análise geral, foi feita através do histograma de correlação de fator de atrito versus percentual de pontos, Figura 44, por meio do qual foram discutidos os percentuais de pontos com valores de erros percentuais médios absolutos menores que 25% e os percentuais de pontos com menores valores de erros percentuais médios absolutos, Figura 45. A correlação de Ellis e George (1977) obteve maior percentual de pontos, 94,1%, com erros percentuais médios absolutos menores que 25%, e também para menores valores de erros percentuais médios absolutos, 27,8%.

Figura 44: Percentual de pontos com erros percentuais médios absolutos menores que 25% para as correlações de fator de atrito.

Figura 45: Percentual de pontos com menores erros percentuais médios absolutos das correlações de fator de atrito.

4.4.4 Reynolds crítico

As equações de Reynolds crítico testadas, Quadro 1, possuíam dependência exclusivamente com o diâmetro de escoamento, visto que a determinação do Reynolds crítico é similar à do número de Reynolds, Equação 6, o qual possui como uma das variáveis o diâmetro da geometria de escoamento. Assim as análises para obter a equação do Reynolds crítico que representou melhor o escoamento, foram determinadas a partir do melhor modelo reológico, modelo Herschel-Buckley, e da melhor equação de diâmetro hidráulico, DH2.

A obtenção da equação que melhor descreveu o Reynolds crítico foi feita através da análise dos valores de erros percentuais médios absolutos das equações de Reynolds crítico.

As análises de erro foram determinadas por meio da Equação 39 e as análises das equações de Reynolds crítico foram feitas calculando as percentagens dos pontos que apresentaram valores de erro percentual médio absoluto menor que 25%, Equação 44.

$$\% Reynolds \ crítico = \frac{n \acute{u}mero \ de \ pontos \ com \ Reynolds \ crítico < 25\%}{N \acute{u}mero \ Total \ de \ pontos} \ x100$$
(44)

Desta forma, obteve-se a fração de números de pontos calculados pela equação de Reynolds crítico que obtiveram valores de erros percentuais médios absolutos menores que 25% sobre o total de pontos calculados pela equação de Reynolds crítico com valores de erros percentuais médios e multiplicou-se a fração por 100 para obter o valor percentual.

Mais uma vez, a "melhor equação" para cada pasta foi determinada através dos pontos que apresentaram menores valores de erro percentual médio absoluto. Foi determinada a fração do número de pontos com menor valor de erro percentual médio absoluto pelo número de pontos de cada equação de Reynolds crítico e multiplicado por 100 para obter o percentual, sendo a melhor equação de Reynolds crítico a que apresentou maior percentual de pontos com menores valores de erros percentuais médios.

Com os dados de erros percentuais médios absolutos das equações de Reynolds crítico foram feitas análises individuais e gerais dos escoamentos. Nas análises individuais as pastas foram avaliadas separadamente e na geral todos os pontos obtidos por cada equação no escamento das três pastas foram trabalhados em conjunto. As análises individuais foram feitas com o auxílio de tabela e as gerais por meio de histograma.

Observando a Tabela 16, as equações de Ryan e Jonhson (1959) e Mishar e Tripathi (1971) obtiveram os valores de erros percentuais médios absolutos menores que 25% nos pontos referentes às mesmas geometrias e temperaturas para o escoamento das três pastas e desvios padrão muito próximos. Entretanto a equação de Mishar e Tripathi (1971) obteve 33,3%, dos pontos com menor valor de erro no escoamento da pasta 1, no escoamento das pastas 2 a equação de Ryan e Jonhson (1959) com 33,3% e no escoamento das pastas 3, também a equação de Ryan e Jonhson (1959) com 41,7%. No escoamento da pasta 3 não foi possível alcançar o regime turbulento na temperatura de 15°C nas geometrias anular I e II, esses pontos não poderam ser analisados.

As equações de Ryan e Jonhson (1959) e Mishar e Triphathi (1971) obtiveram o mesmo percentual de pontos, 53,1%, com valores de erro percentual médio absoluto menor que 25%, Figura 46. A equação de Ryan e Jonhson (1959) obteve maior percentual, 19,4%, de pontos com menores valores de erros percentuais médios absolutos, Figura 47.

Devido à proximidade dos valores dos erros percentuais médios absolutos das equações de Reynolds crítico avaliadas, pode-se considerar que as equações de Ryan e Jonhson (1959) e Mishar e Tripathi (1971) obtiveram resultados satisfatórios na determinação do Reynolds crítico.

	REYNOLDS	CIRCULAR		Al	ANULAR I		ANULAR II		ANULAR III			DESVIO	<2.5%	MELHOR		
	CRÍTICO	15 °C	25°C	60°C	15 °C	25°C	60°C	15 °C	25°C	60°C	15 °C	25°C	60°C	PADRÃO	<25%	EQUAÇAO %
1	Ryan e Jonhson (1959)	30,8	32,0	50,5	47,0	13,4	43,7	31,0	23,5	4,4	46,2	3,8	8,1	16,5	41,7	8,33
1	Mishra e Tripathi (1971).	31,3	32.4	50,6	46,3	12,9	40,9	30,4	23,1	8,7	45,6	3,4	7,6	16,5	41,7	33,3
2	Ryan e Jonhson (1959)	2,6	21,2	32,7	166,0	79,5	19,1	103,3	45,1	11,9	96,1	33,9	3,5	47,9	41,7	33,3
4	Mishra e Tripathi (1971).	3,1	21,2	33,1	165,0	79,2	18,3	103,1	45,3	12,3	95,1	34,0	4,1	47,5	41,7	16,7
2	Ryan e Jonhson (1959)	10,3	10,2	22,2	-	6,3	19,1	-	13,6	22,1	83,6	47,9	45,4	22,9	70,0	41,7
3	Mishra e Tripathi (1971).	10,8	10,6	22,6	-	6,4	18,3	-	14,2	21,5	82,4	46,9	44,6	22,4	70,0	16,7

Tabela 16: Erros percentuais para o Reynolds crítico para o modelo de Herschel-Buckley para geometrias circular e anulares com diâmetro hidráulico DH2 e nas temperaturas 15, 25 e 60°C. Os números 1, 2 e 3 são referentes, respectivamente, às pastas 1, 2 e 3.

Figura 46: Percentual de pontos com erros percentuais médios absolutos menores que 25% para as equações de Reynolds crítico.

5. CONCLUSÃO

Foi analisada a perda de carga no escoamento de três pastas de cimento com diferentes composições. Na unidade experimental construída podem ser escoadas as pastas em quaro geometrias uma circular de 1" e três anulares: I (2" 1 $\frac{1}{2}$ "); II (1 $\frac{1}{2}$ " e 1"); III (1 $\frac{1}{4}$ " e $\frac{3}{4}$ ") e nas temperaturas de 15, 25 e 60°C.

Análise da pasta de cimento 3:

Através das análises feitas do escoamento da pasta de cimento 3 chegaram-se as seguintes conclusões.

O modelo reológico Herschel-Buckley apresentou os melhores resultados, seguido do modelo Bigham e *power law*.

A equação do diâmetro hidráulico DH1 descreveu melhor os diâmetros anulares utilizando o modelo reológico *power law*.

As equações de Mishar e Tripathi (1971) e Ryan e Jonhson (1959) obtiveram bons resultados para os modelos reológicos *power law* e Herschel-Buckley e a equação de Hanks (1963) paro modelo de Bingham, sendo que as equações de Thomas (1963) e Craft (1962) não apresentaram nenhum erro menor que 25%.

A correlação de Ellis e George (1977) obteve bons resultados para os três modelos reológicos. A correlação de Darby e Melson (1981) obteve bons resultados para o modelo de Bingham.

Análise das três pastas

Através das análises feitas dos escoamentos das três pastas de cimento chegaram-se as seguintes conclusões.

O modelo reológico Herschel-Buckley apresentou os melhores resultados, seguido do modelo Bigham e *power law*.

A equação do diâmetro hidráulico DH2 descreveu melhor os diâmetros anulares utilizando o modelo reológico Herschel-Buckley.

As equações de Mishar e Triphathi (1971) e Ryan e Jonhson (1959) obtiveram bons resultados utilizando o modelo reológico Herschel-Buckley e a equação DH2.

A correlação de Ellis e George (1977) obteve bons resultados utilizando o modelo reológico Herschel-Buckley e a equação DH2.

6. RFERÊNCIAS BIBLIOGRÁFICAS

ABNT – Associação Brasileira de Normas Técnicas. NBR 9831 – Cimento Portland destinado a cimentação de poços petrolíferos – Requisitos e métodos e ensaio, Rio de janeiro: ABNT, 2006.

BRAGA, E. R. Estudo do Escoamento de Fluidos de Perfuração em Dutos e Regiões Anulares. Dissertação de mestrado, Universidade Federal Rural do Rio de Janeiro, 2009, 111 p.

BEZERRA, U. T. Compósitos Protland – Bioploímeros para Cimentação de Poços de Petróleo. Tese de doutorado, Universidade Federal do Rio Grande do Norte, 2006, 278 p

BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Fenômeno de Transporte. 2ª edição, Editora LTC, 2004. 905p.

BOURGOYNE JR, A. T., MILLHEIM, K. K., CHENEVERT, M. E., YOUNG JR, F. S. "Applied drilling engineering". Second printing, Society of petroleum engineers, Richardson, Texas, 1991, 502 p.

CAMPOS, G.; SIMÃO A. C.; TEIXEIRA C. K.; CONCEIÇÃO F. C. A. Curso básico sobre cimentação primária. Apostila Interna. CENPES/PETROBRAS, 2002.

CHURCHILL, S. W., "Friction factor equation spans all fluid flow regimes", Chemical Engineering, v 7, 1977, pp 91-92.

CRAFT, B. C. "well design, drilling and production". New Jersey, Prentice-hall, 1962.

DARBY, R. and MELSON, J. "How to predict the friction factor for the flow of Bingham plastics", Chemical Engineering, 28, vol. 88, no. 26, pp 59–61, 1981.

DARBY, R., MUN, D. V., BOGER, "Predict Friction Loss in Slurry Pipes", *Chemical Engineering*, v.9, pp 116-119, 1992.

DODGE, D. W.; METZNER, A. B. "Turbulent Flow of non Newtonian Systems." AIChE J., v. 5, n. 2, pp 191-204, 1959.

ELLIS, R. C. e GEORGE, D. S. "Practical interpretation on theology, annular displacing torces. How to avoid by passing mud during primary cementing". World Oil, pp 64-69, 1977.

FOX, R. W., McDONALD, A. T., PRITCHARD, P. J. "Introduction to Fluid Mechanics", Six Edition, John Wiley & Sons Inc, 2004, 789 p.

GOMES, F. J. A. D. Hidráulica, fluidos de potência: racionalização do uso do fator de fricção. I. In: Encontro Técnico sobre Informática na Perfuração, CAPER/87, Módulo 7, Salvador, Brasil, 1987.

HANKS, R.W. "Laminar-turbulent transition for flow in pipes, concentric annuli, and parallel plates" AIChE Journal ; v. 9, n.1, pp 45-48, 1963.

MACHADO, J. C. V. Reologia e Escoamento de Fluidos. Ênfase na Indústria do Petróleo. Interciência, Rio de Janeiro, 2002.

MIRANDA, C. R. Pastas de Cimento de Alta Compacidade para Poços de Petróleo - Processo de Formulação, Propriedades Reológicas, Resistência Mecânica e Química. Dissertação de doutorado, Instituto Militar de Engenharia, 2008, 260 p.

MISHRA, P.; TRIPATHI, G. "Transition from laminar to turbulent flow of purely viscous non-Newtonian fluids in tubes." Chemical Engineering Science, 26, pp 915-921, 1971.

NELSON, E.; GUILLOT, D. "Well Cementing". 2nd. ed. Texas: Schlumberger, 2006, pp 319-341.

PARAISO E. C. H. Estudos do Escoamento de Pasta de Cimento em Dutos Circulares e Anulares Concêntricos. Dissertação de Mestrado, Universidade Federal Rural do Rio de Janeiro, 2011, 96 p.

RYAN, N. W.; JOHNSON, M. M. "Transition from laminar to turbulent flow in pipes." AICHE Journal, 5(4), 1959, pp 433 – 435.

SILVA, M. G. P.; MARTINS, L. M.; OLIVEIRA, A. A. J.; ABREU, A. G.; FORTES, P.; SANTOS, F. P.; PEREIRA, S. G. J.; COSTA, A. S. Avaliação de equações pertinentes aos projetos hidráulicos com fluidos de perfuração, pastas de cimento e fluidos de completação no escoamento tubular e anular, Relatório Técnico Interno n° 675 – 12009, Vol.1, CENPES/PETROBRAS, 1989, 129 p.

THOMAS, D. G. "Non-Newtonian suspensions, Part I". Ind. Chemical Engineering, 55: 18-29, N. 1963.

THOMAS, J. E.; TRIGGIA, A. A.; CORREIA, C. A.; FILHO, C. V.; XAVIER, J. A. D.; MACHADO, J. C. V.; FILHO, J. E. S.; PAULA, J. L.; ROSSI, N. C. M.; PITOMBO, N. E. S.; GOUVEIA, P. C. V. M.; CARVALHO, R. S. e BARRAGEM, R. V. Fundamentos de Engenharia de Petróleo, 2° ed. Editora Intercâmbio, Rio de Janeiro, Petrobrás, 2001, 524 p.

TOMITA, Y., A study on non-Newtonian flow in pipe lines. Bulletin JSME, v. 2, n. 5, pp 10-16, 1959.

7. SUGESTÕES PARA TRABALHS FUTUROS

As sugestões para trabalhos futuros estão relacionadas ao aperfeiçoamento da unidade experimental. Fazer programas que possam ler os dados de pressão e vazão *on-line* e criar uma mesa de comandos. Atualmente são necessários dois ou mais estudantes para coletar os dados experimentais. Com o programa e a mesa de controle um estudante será necessário para coletar os dados.

Fazer experimentos com pastas de cimento modificando a composição dos aditivos e também com novos aditivos, como por exemplos aditivos com potenciais de glicose como o bagaço da cana de açúcar.

Comparar os escoamentos das pastas de cimento leve alterando a concentração da microesfera para ver o efeito da microesfera na reologia das pastas.

Explorar os dados experimentais apresentados nesse trabalho para publicações de artigos.

8. ANEXO

- A Dados experimentais obtidos para pasta 1
 - A1 Geometria circular
 - A2 Geometria anular I
 - A3 Geometria anular II
 - A4 Geometria anular III

B – Dados experimentais obtidos para pasta 2

- B1 Geometria circular
- B2 Geometria anular I
- B3 Geometria anular II
- B4 Geometria anular III
- B5 Dados reológicos
- B6 Reynolds crítico
- B7 Diâmetro hidráulico
- B8 Fator de atrito

C - dados experimentais obtidos para pasta 3

- C1 Geometria circular
- C2 Geometria anular I
- C3 Geometria anular II
- C4 Geometria anular III

A – Dados experimentais obtidos para pasta 1 A1- Geometria Circular

Dados da unidade experimental								
Rotação da	<w></w>	ρ	Т	ΔP				
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)				
100	38,15	1,896	60	0,05				
150	65,81	1,895	60	0,06				
200	95,26	1,882	59	0,08				
250	124,9	1,890	60	0,09				
300	155,4	1,885	60	0,01				
350	178,1	1,873	61	0,17				
400	208,3	1,875	61	0,21				
450	235,8	1,878	61	0,26				
500	263,4	1,879	60	0,32				
600	312,0	1,880	60	0,43				
700	369,1	1,886	60	0,57				
800	420,8	1,880	60	0,70				
900	475,3	1,880	60	0,86				
1000	526,8	1,875	61	1,03				
1100	578,4	1,873	61	1,20				
1200	628,4	1,884	61	1,39				
1300	677,4	1,880	62	1,57				

Tabela 17: Dados experimentais para geometria circular no escoamento da pasta 1 a 15°C.

Figura 48: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular no escoamento da pasta 1 a 15°C.

Dados da unidade experimental								
Rotação da	<w></w>	ρ	Т	ΔP				
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)				
100	41,5	1,927	25	0,04				
150	65,2	1,917	25	0,05				
200	92,5	1,909	25	0,07				
250	119,0	1,906	25	0,08				
300	143,7	1,890	25	0,10				
350	183,6	1,913	25	0,21				
400	212,3	1,918	25	0,26				
450	244,4	1,927	25	0,32				
500	271,7	1,928	25	0,39				
600	323,1	1,917	25	0,54				
700	375,4	1,922	25	0,70				
800	431,4	1,916	25	0,88				
900	483,6	1,920	27	1,07				
1000	533,6	1,912	27	1,28				
1100	583,2	1,914	27	1,45				
1200	633,4	1,912	27	1,69				
1300	687,0	1,917	32	1,89				

Tabela 18: Dados experimentais para geometria circular no escoamento da pasta 1 a 25°C.

Figura 49: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular no escoamento da pasta 1 a 25°C.

Rotação da	<w></w>	0	Т	ΔΡ
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)
100	38,1	1,896	60	0,05
150	65,8	1,895	60	0,06
200	95,3	1,882	59	0,08
250	124,9	1,890	60	0,09
300	155,4	1,885	60	0,01
350	178,1	1,873	61	0,17
400	208,3	1,875	61	0,21
450	235,8	1,878	61	0,26
500	263,4	1,879	60	0,32
600	312,0	1,880	60	0,43
700	369,1	1,886	60	0,57
800	420,8	1,880	60	0,71
900	475,3	1,880	60	0,86
1000	526,8	1,875	61	1,03
1100	578,4	1,873	61	1,20
1200	628,4	1,884	61	1,39
1300	677,4	1,880	62	1,57

Tabela 19: Dados experimentais para geometria circular no escoamento da pasta 1 a 60°C.

Figura 50: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular no escoamento da pasta 1 a 60°C.

A – Dados experimentais obtidos para pasta 1 A2- Geometria anular I

	D	adob da ama	ade experi	linentai	
Ro bon	otação da nba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)
	100	35,5	1,9317	14	0,37
	150	64,5	1,9332	14	0,56
	200	92,8	1,9383	14	0,75
	250	124,1	1,9414	14	0,93
	300	148,0	1,9252	14	1,11
	350	169,2	1,9215	16	1,25
	400	196,0	1,8392	15	1,44
	450	217,1	1,9092	16	1,65
	500	235,9	1,8996	16	1,84
	600	273,7	1,9172	16	2,36
	700	320,2	1,9226	16	2,66
	800	363,0	1,9242	16	3,09
	900	409,0	1,9273	17	3,56
	1000	443,1	1,9269	17	4,12
	1100	476,0	1,9254	17	4,73
	1200	506,3	1,9232	18	5,36
	1300	535,2	1.9138	19	5,98

Tabela 20: Dados experimentais para geometria anular I no escoamento da pasta 1 a 15°C. Dados da unidade experimental

Figura 51: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I no escoamento da pasta 1 a 15°C.

Dados da unidade experimental							
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)			
100	31,0	1,9262	23	0,29			
150	55,9	1,9157	23	0,43			
200	87,5	1,9189	23	0,56			
250	122,7	1,9312	23	0,70			
300	146,8	1,9174	24	0,85			
350	173,0	1,9033	24	1,00			
400	195,0	1,8856	25	1,20			
450	222,7	1,8764	23	1,36			
500	246,0	1,9170	23	1,56			
600	285,6	1,9158	23	2,02			
700	334,3	1,9163	22	2,66			
800	374,7	1,9194	23	3,28			
900	414,2	1,9164	24	3,89			
1000	448,6	1,9156	24	4,46			
1100	480,8	1,9107	25	5,00			
1200	513,4	1,9110	26	5,54			
1300	540,2	1,9065	27	6,12			

Tabela 21: Dados experimentais para geometria anular I no escoamento da pasta 1 a 25°C.

Figura 52: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I no escoamento da pasta 1 a 25°C.

	Dados da unidade experimental				
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)	
100	32,1	1,8926	60	0,39	
150	61,6	1,8918	60	0,49	
200	92,2	1,8484	61	0,60	
250	120,7	1,8461	61	0,70	
300	138,6	1,8450	61	0,82	
350	163,3	1,8454	61	0,92	
400	194,7	1,8460	61	1,05	
450	220,6	1,8426	61	1,20	
500	241,2	1,8317	61	1,39	
600	298,5	1,8473	61	1,93	
700	350,0	1,8516	61	2,49	
800	395,0	1,8458	61	3,07	
900	437,1	1,8381	62	3,67	
1000	477,5	1,8341	62	4,25	
1100	519,5	1,8469	64	4,81	
1200	558,0	1,8470	65	5,35	
1300	594,0	1,8457	66	5,90	

Tabela 22: Dados experimentais para geometria anular I no escoamento da pasta 1 a 60°C.

Figura 53: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I no escoamento da pasta 1 a 60°C.

A – Dados experimentais obtidos para pasta 1 A3- Geometria anular II

	Rotação da	<w></w>	ρ	Т	ΔP
_	bomba (rpm)	(kg.min^{-1})	$(kg.l^{-1})$	(°C)	(bar)
	100	45,3	1,8460	14	0,21
	150	65,7	1,8594	14	0,32
	200	86,3	1,8406	14	0,43
	250	127,9	1,8671	14	0,55
	300	148,6	1,8118	14	0,62
	350	174,5	1,8487	14	0,74
	400	195,2	1,8298	14	0,89
	450	216,8	1,8376	14	1,02
	500	239,1	1,8385	14	1,13
	600	292,9	1,8480	15	1,54
	700	342,1	1,8500	15	1,96
	800	391,6	1,8524	16	2,40
	900	438,1	1,8526	16	2,92
	1000	478,8	1,8510	16	3,43
	1100	514,7	1,8486	16	4,01
	1200	550,0	1,8496	18	4,59
	1300	582,6	1,8478	18	5,07
	1400	611,7	1,8473	18	5,56
	1500	641,4	1,8425	18	6,03

Tabela 23: Dados experimentais para geometria anular II no escoamento da pasta 1 a 15°C. Dados da unidade experimental

Figura 54: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 1 a 15°C.

Dados da unidade experimental					
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)	
100	25,1	1,8482	23	0,15	
150	57,9	1,8529	23	0,22	
200	91,1	1,8512	25	0,28	
250	126,9	1,8285	25	0,36	
300	150,2	1,8423	26	0,44	
350	175,1	1,8408	25	0,54	
400	202,3	1,8363	25	0,69	
450	228,9	1,8418	24	0,87	
500	243,0	1,8376	24	1,05	
600	295,9	1,8361	24	1,49	
700	341,3	1,8352	24	1,99	
800	388,8	1,8310	24	2,48	
900	432,2	1,8310	25	3,01	
1000	472,7	1,8304	25	3,50	
1100	512,7	1,8301	26	4,01	
1200	551,8	1,8279	26	4,49	
1300	589,5	1,8174	28	4,97	
1400	619,7	1,8185	29	5,36	
1500	647,9	1,8121	29	5,76	

Tabela 24: Dados experimentais para geometria anular II no escoamento da pasta 1 a 25°C.

Figura 55: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 1 a 25°C.

Dados da unidade experimental				
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)
100	34,3	1,8183	62	0,17
150	58,6	1,8004	62	0,22
200	76,4	1,7890	62	0,27
250	105,2	1,8153	62	0,32
300	129,1	1,8190	62	0,37
350	156,0	1,7888	61	0,45
400	184,5	1,8061	61	0,57
450	206,5	1,8139	61	0,72
500	227,0	1,7990	61	0,89
600	292,1	1,8138	61	1,26
700	342,7	1,8186	61	1,64
800	391,9	1,8130	61	2,04
900	439,5	1,8168	61	2,43
1000	486,8	1,8127	62	2,85
1100	538,7	1,8254	62	3,28
1200	583,2	1,8234	64	3,70
1300	627,0	1,8229	64	4,10
1400	667,4	1,8227	66	4,53
1500	706,7	1,8225	67	4,96

Tabela 25: Dados experimentais para geometria anular II no escoamento da pasta 1 a 60°C.

Figura 56: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 1 a 60°C.

A4- Geometria anular III

	D	ados da unida	ade experi	mental	
	Rotação da	$\langle W \rangle$	ρ	Т	ΔP
	bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)
Ī	100	45,3	1,8976	14	0,21
	150	69,7	1,8973	14	0,32
	200	102,8	1,8945	14	0,44
	250	129,2	1,9140	14	0,57
	300	154,6	1,8933	14	0,73
	350	179,5	1,8827	14	0,88
	400	209,1	1,8956	14	1,04
	450	235,9	1,9037	15	1,20
	500	260,1	1,9018	15	1,36
	600	310,2	1,9018	15	1,72
	700	356,4	1,8952	15	2,10
	800	404,1	1,8955	16	2,47
	900	451,3	1,8998	17	2,99
	1000	493,4	1,8969	18	3,46
	1100	530,1	1,8963	18	3,95
	1200	564,7	1,8915	18	4,40
	1300	600,9	1,8953	19	4,81
	1400	634,5	1,8991	18	5,16
	1500	665,1	1,8949	18	5,49

Tabela 26: Dados experimentais para geometria anular III no escoamento da pasta 1 a 15°C.

Figura 57: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 1 a 15°C.

	Dados da u	nidade exp	erimental	
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)
100	30,3	1,8798	25	0,13
150	59,4	1,8743	25	0,20
200	94,3	1,8894	25	0,26
250	115,2	1,8728	25	0,34
300	157,2	1,8861	25	0,43
350	185,1	1,8887	25	0,52
400	209,0	1,8860	25	0,66
450	234,9	1,8862	25	0,84
500	257,1	1,8882	25	1,01
600	311,2	1,8874	25	1,40
700	359,4	1,88300	26	1,80
800	406,4	1,8832	26	2,27
900	452,0	1,8830	26	2,75
1000	495,2	1,8787	26	3,22
1100	535,8	1,8776	26	3,67
1200	575,6	1,8771	27	4,10
1300	614,4	1,8788	28	4,50
1400	653,0	1,8810	28	4,91
1500	687,0	1,8774	30	5,26

Tabela 27: Dados experimentais para geometria anular III no escoamento da pasta 1 a 25°C.

Figura 58: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular III no escoamento da pasta 1 a 25°C.

Dados da unidade experimental					
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)	
100	30,0	1,8516	58	0,12	
150	56,9	1,8494	59	0,16	
200	80,1	1,8486	59	0,20	
250	110,8	1,8506	60	0,25	
300	149,0	1,8520	61	0,33	
350	174,9	1,8499	61	0,44	
400	196,7	1,8425	61	0,57	
450	226,9	1,8436	61	0,72	
500	252,9	1,8479	61	0,87	
600	302,4	1,8484	61	1,11	
700	357,5	1,8482	61	1,53	
800	407,1	1,8489	61	1,91	
900	456,4	1,8495	61	2,27	
1000	504,4	1,8489	61	2,65	
1100	551,2	1,8450	61	3,04	
1200	596,7	1,8460	63	3,40	
1300	641,4	1,8446	63	3,80	
1400	683,5	1,8446	63	4,19	
1500	725,2	1,8426	65	4,56	

Tabela 28: Dados experimentais para geometria anular III no escoamento da pasta 1 a 60°C.

Figura 59: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular III no escoamento da pasta 1 a 60°C.

B – Dados experimentais obtidos para pasta 2 B1- Geometria Circular

Du	uos uu umuu	de experi	mentui	
Rotação da	<w></w>	ρ	Т	ΔP
bomba (rpm)	(kg.min^{-1})	$(kg.l^{-1})$	(°C)	(bar)
100	48,6	1,9514	13	0,07
150	78,1	1,9514	13	0,10
200	101,2	1,9514	13	0,13
250	133,1	1,9514	13	0,15
300	150,7	1,9514	13	0,17
350	183,2	1,9514	15	0,19
400	216,8	1,9514	16	0,21
450	244,0	1,9514	16	0,26
500	269,0	1,9514	15	0,37
550	296,2	1,9514	16	0,53
600	323,3	1,9514	16	0,64
700	374,6	1,9514	16	0,84
800	426,3	1,9514	15	1,07
900	480,9	1,9514	15	1,28
1000	527,6	1,9514	15	1,50
1100	576,8	1,9514	16	1,74
1200	626,5	1,9514	16	1,97
1300	672,3	1,9514	16	2,16
1400	714,1	1,9514	16	2,35
1500	754,1	1,9514	17	2,60

Tabela 29: Dados experimentais para geometria circular no escoamento da pasta 2 a 15°C. Dados da unidade experimental

Figura 60: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular no escoamento da pasta 2 a 15°C.

D	Dados da unidade experimentar					
Rotação da	<w> .</w>	ρ.	Т	ΔP		
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)		
100	49,5	1,8116	26	0,06		
150	77,6	1,8100	25	0,08		
200	105,6	1,8105	24	0,09		
250	131,4	1,8072	24	0,11		
300	156,7	1,8069	24	0,13		
350	184,7	1,8046	25	0,16		
400	211,1	1,8040	28	0,27		
450	234,5	1,8130	26	0,35		
500	266,7	1,8164	25	0,43		
600	313,1	1,8044	25	0,59		
700	357,7	1,8025	24	0,76		
800	415,8	1,7960	26	0,96		
900	473,8	1,7999	26	1,18		
1000	526,7	1,8066	26	1,38		
1100	570,4	1,8052	27	1,60		
1200	612,0	1,8038	27	1,82		
1300	673,9	1,8092	27	2,10		
1400	719,5	1,8103	27	2,35		
1500	764,4	1,8103	27	2,58		

Tabela 30: Dados experimentais para geometria circular no escoamento da pasta 2 a 25°C.

Figura 61: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular no escoamento da pasta 2 a 25°C.
Dados da unidade experimental									
Rotação da	$\langle W \rangle$	ρ	Т	ΔP					
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)					
100	39	1,912	62	0,04					
150	66	1,912	62	0,06					
200	86	1,912	62	0,07					
250	111	1,912	61	0,10					
300	145	1,912	61	0,12					
350	172	1,912	61	0,18					
400	193	1,912	61	0,22					
450	222	1,912	61	0,28					
500	248	1,912	61	0,33					
600	295	1,912	61	0,45					
700	357	1,912	61	0,59					
800	408	1,912	61	0,75					
900	464	1,912	61	0,92					
1000	514	1,912	61	1,08					
1100	570	1,912	61	1,30					
1200	616	1,912	61	1,46					
1300	660	1,912	62	1,66					
1400	704	1,912	63	1,82					
1500	748	1,912	63	2,01					

Tabela 31: Dados experimentais para geometria circular no escoamento da pasta 2 a 60°C.

Figura 62: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular no escoamento da pasta 2 a 60°C.

B2 – Dados experimentais obtidos para pasta 2 B1- Geometria anular I

_	Da	uos ua uniua	iue experi	incinai	
	Rotação da	<w> .</w>	ρ.	Т	ΔP
	bomba (rpm)	(kg.min^{-1})	$(kg.l^{-1})$	(°C)	(bar)
	100	60,6	1,9438	22	0,37
	150	88,5	1,9453	23	0,59
	200	113,2	1,9452	24	0,81
	250	138,8	1,9394	24	1,04
	300	165,6	1,9554	25	1,28
	350	190,9	1,9540	25	1,54
	400	211,3	1,9543	26	1,84
	450	232,6	1,9494	26	2,17
	500	254,5	1,9534	27	2,60
	600	291,1	1,9531	27	3,24
	700	322,4	1,9527	27	3,96
	800	351,2	1,9517	27	4,65
	900	369,8	1,9582	23	5,19
	1000	393,8	1,9588	23	5,83
	1100	416,9	1,9560	24	6,33
	1200	439,9	1,9551	26	7,05
	1300	463,9	1,9513	26	7,70
	1400	490,8	1,9463	28	8,33

Tabela 32: Dados experimentais para geometria anular I no escoamento da pasta 2 a 15°C. Dados da unidade experimental

Figura 63: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I no escoamento da pasta 2 a 15°C.

	Dados da unidade experimental								
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)					
100	69,4	1,9326	23	0,40					
150	82,3	1,9318	23	0,65					
200	117,9	1,9400	25	0,90					
250	136,7	1,9395	25	1,12					
300	159,0	1,9417	26	1,39					
350	183,1	1,9393	26	1,64					
400	200,5	1,9389	26	1,87					
450	216,7	1,9411	26	2,18					
500	230,8	1,9444	25	2,42					
600	256,4	1,9434	25	2,95					
700	278,4	1,9412	25	3,45					
800	297,6	1,9397	25	3,89					
900	317,7	1,9436	23	4,39					
1000	338,2	1,9437	24	4,77					
1100	379,0	1,9431	27	5,28					
1200	399,0	1,9370	27	6,32					
1300	420,0	1,9378	28	6,82					
1400	448,0	1,9339	30	7,46					

Tabela 33: Dados experimentais para geometria anular I no escoamento da pasta 2 a 25°C.

Figura 64: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I no escoamento da pasta 2 a 25°C.

	Dados da u	inidade exp	perimental	
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)
100	57,5	1,9027	57	0,19
150	83,1	1,9143	58	0,35
200	102,7	1,9162	59	0,52
250	126,2	1,9182	59	0,76
300	162,8	1,9229	59	1,08
350	192,2	1,9248	59	1,45
400	214,8	1,9153	59	1,80
450	235,2	1,9208	59	2,21
500	254,7	1,9161	59	2,66
600	294,5	1,9164	58	3,35
700	329,1	1,9178	57	4,11
800	365,0	1,9216	57	4,82
900	396,4	1,9327	58	5,68
1000	422,4	1,9159	60	6,31
1100	451,1	1,9146	60	6,85
1200	478,4	1,9084	62	7,53
1300	509,1	1,9016	64	8,04
1400	539,1	1,8968	66	8,60

Tabela 34: Dad<u>os experimentais para geometria anular I no escoamento da</u> pasta 2 a 60°C.

Figura 65: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I no escoamento da pasta 2 a 60°C.

B3 – Dados experimentais obtidos para pasta 2 B2- Geometria anular II

D	auos ua uniua	aue experi	mentai	
Rotação da	<W $>$	ρ	Т	ΔP
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)
100	59	1,8743	25	0,27
150	91	1,8755	25	0,41
200	120	1,8825	25	0,55
250	147	1,8836	25	0,70
300	173	1,8721	25	0,88
350	196	1,8760	26	1,07
400	228	1,8720	25	1,29
450	252	1,8906	24	1,53
500	272	1,8892	24	1,77
600	319	1,8843	24	2,25
700	365	1,8852	24	2,77
800	396	1,8912	24	3,25
900	433	1,8924	24	3,74
1000	467	1,8942	25	4,24
1100	500	1,8966	25	4,76
1200	528	1,8970	25	5,29
1300	557	1,8974	26	5,76
1400	586	1,8977	26	6,26

Tabela 35: Dados experimentais para geometria anular II no escoamento da pasta 2 a 15°C.

Figura 66: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 2 a 15°C.

	Dados da unidade experimental									
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)						
100	69	1,8602	25	0,31						
150	98	1,8626	25	0,49						
200	123	1,8629	25	0,69						
250	150	1,8651	25	0,90						
300	172	1,8648	25	1,12						
350	199	1,8641	25	1,37						
400	221	1,8600	26	1,60						
450	240	1,8570	26	1,84						
500	261	1,8566	25	2,09						
600	315	1,8551	25	2,36						
700	358	1,8564	25	2,90						
800	395	1,8594	25	3,43						
900	431	1,8602	25	3,89						
1000	460	1,8579	26	4,37						
1100	489	1,8600	26	4,85						
1200	523	1,8582	26	5,33						
1300	547	1,8576	27	5,77						
1400	578	1,8597	27	6,26						

Tabela 36: Dados experimentais para geometria anular II no escoamento da pasta 2 a 25°C.

Figura 67: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 2 a 25°C.

	Dados da unidade experimental									
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)						
100	34	1,8332	61	0,18						
150	71	1,8327	61	0,27						
200	106	1,8327	61	0,37						
250	141	1,8339	62	0,49						
300	168	1,8352	62	0,64						
350	193	1,8385	62	0,81						
400	217	1,8333	61	1,00						
450	248	1,8365	60	1,21						
500	274	1,8345	60	1,42						
600	325	1,8378	60	1,87						
700	376	1,8383	60	2,38						
800	421	1,8395	60	2,90						
900	464	1,8404	60	3,40						
1000	505	1,8414	60	3,95						
1100	544	1,8404	60	4,42						
1200	580	1,8411	60	4,95						
1300	612	1,8417	61	5,42						
1400	647	1,8404	61	6,12						

Tabela 37: Dados experimentais para geometria anular II no escoamento da pasta 2 a 60°C.

Figura 68: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 2 a 60°C.

B4 – Geometria anular III

$\frac{1}{2} \frac{1}{2} \frac{1}$									
Rotação da	<w></w>	ρ	Т	ΔP					
bomba (rpm)	$(kg.min^{-1})$	$(kg.l^{-1})$	(°C)	(bar)					
100	40,8	1,9351	14	0,27					
150	72,1	1,9426	14	0,38					
200	103,4	1,9433	15	0,49					
250	130,7	1,9437	15	0,62					
300	152,4	1,9414	17	0,71					
350	172,3	1,9326	17	0,85					
400	205,0	1,9438	16	0,99					
450	233,7	1,9490	17	1,08					
500	258,9	1,9485	16	1,31					
600	308,9	1,9513	15	1,73					
700	354,6	1,9429	14	2,16					
800	398,5	1,9409	14	2,57					
900	441,3	1,9424	16	2,88					
1000	479,6	1,9470	16	3,27					
1100	510,0	1,9424	16	3,65					
1200	551,7	1,9450	16	4,11					
1300	586,0	1,9445	16	4,55					
1400	624,2	1,9470	15	5,17					
1500	659,4	1,9463	16	5,49					

Tabela 38: Dados experimentais para geometria anular III no escoamento da pasta 2 a 15°C.

Figura 69: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 2 a 15°C.

	Dados da unidade experimental								
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)					
100	40,6	1,9418	26	0,19					
150	60,3	1,9374	24	0,28					
200	96,8	1,9455	24	0,37					
250	124,4	1,9449	25	0,45					
300	151,9	1,9381	27	0,55					
350	177,5	1,9390	26	0,65					
400	194,2	1,9357	25	0,78					
450	229,3	1,9381	26	0,90					
500	251,6	1,9363	25	1,03					
600	310,1	1,9372	23	1,32					
700	360,5	1,9393	25	1,63					
800	407,1	1,9409	24	2,15					
900	450,8	1,9382	25	2,62					
1000	495,8	1,9331	24	3,04					
1100	540,7	1,9393	25	3,53					
1200	579,9	1,9360	26	3,95					
1300	615,9	1,9376	26	4,39					
1400	644,4	1,9335	25	4,85					
1500	677,4	1,9330	25	5,39					

Tabela 39: Dados experimentais para geometria anular III no escoamento da pasta 2 a 25°C.

Figura 70: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular III no escoamento da pasta 2 a 25°C.

	Dados da unidade experimental								
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)					
100	33,9	1,9120	60	0,19					
150	61,2	1,9100	60	0,26					
200	89,8	1,9102	60	0,31					
250	118,6	1,9096	60	0,38					
300	144,3	1,9054	60	0,44					
350	171,9	1,9043	60	0,52					
400	201,9	1,9057	61	0,60					
450	227,6	1,9059	61	0,70					
500	253,8	1,9048	61	0,84					
600	306,1	1,9041	61	1,17					
700	359,3	1,9055	61	1,51					
800	410,9	1,9068	60	1,94					
900	458,5	1,9057	62	2,36					
1000	506,1	1,9064	62	2,79					
1100	552,0	1,9065	63	3,10					
1200	597,6	1,9061	64	3,50					
1300	637,8	1,9040	65	3,92					
1400	678,2	1,9019	65	4,30					
1500	716,3	1,8992	67	4,68					

Tabela 40: Dados experimentais para geometria anular III no escoamento da pasta 2 a 60°C.

Figura 71: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular III no escoamento da pasta 2 a 60°C.

B5 – Dados reológicos

T (°C) –		power law			Bingham			Herschell	-Buckley	
I (°C)	n	K (Pa.s ⁿ)	R ²	LE (Pa)	VP (Pa.s)	R²	n	K (Pa.s ⁿ)	LE (Pa)	R²
15	0,384	2,219	0,894	4,919	0,050	0,997	0,940	0,079	4,548	0,998
25	0,290	3,241	0,837	5,832	0,036	0,996	0,990	0,040	5,787	0,996
60	0,181	6,603	0,854	10,147	0,026	0,980	0,817	0,121	9,390	0,989

B6 – Diâmetro hidráulico

MÉDIA COEF. MODELO T(AC) VARIAÇÃO		ANULAR 1(2" e 1 1/2")		ANUL	ANULAR 2(1 1/2" e 1")		ANULAR 3(1 1/4" e 3/4")			ERRO MÉDIO				
REOLÓG.	1(°C)	MODELO REOLÓG(R ²)	DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3
WI	15°C	0,899	22,4	42,1	37,7	20,7	41,7	32,4	18,7	37,0	16,6	20,6	40,3	28,9
wer 1	25°C	0,834	30,0	50,3	42,6	29,7	50,0	42,9	29,9	40,1	19,2	29,9	46,8	34,9
od	60°C	0,864	24,4	36,7	32,8	23,9	43,1	37,3	20,8	35,8	26,6	23,0	38,5	32,2
Е	15°C	0,998	118,3	43,3	58,3	68,5	12,4	48,8	77,4	20,1	62,3	88,1	25,3	56,5
ingha	25°C	0,997	101,5	35,3	49,8	52,1	3,1	34,8	54,2	5,8	43,4	69,3	14,8	42,6
В	60°C	0,981	140,4	64,0	80,3	49,3	5,2	33,0	64,2	15,2	53,9	84,6	28,1	55,7
.y	15°C	0,999	110,6	39,8	56,4	61,7	8,5	41,6	58,0	9,3	47,8	76,7	19,2	48,6
esche suckle	25°C	0,997	104,1	37,3	51,6	49,9	2,4	32,7	50,7	5,2	40,3	68,2	15,0	41,5
н	60°C	0,990	95,9	37,2	49,9	45,1	5,4	27,5	38,0	5,6	29,7	59,6	16,1	35,7
									ERRO	MÉDIO G	LOBAL	57,8	27,1	41,9

Tabela 42: Erro percentual médio absoluto para as equações de diâmetro hidráulico utilizadas no escoamento da pasta 2.

B7 – Reynolds crítico

Reynolds crítico - pasta 2 (15°C)		Circular de 1"	Circular de 1"			ANULAR II			ANULAR III		
 Reynor	us ciffico - pasta 2 (15 C)		DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3
wer .w	Erro(%) - Jonhson (1959)	11,42	10,20	17,40	15,60	12,90	19,98	15,18	5,00	2,92	3,00
 pov la	Erro(%) - Mishra e T. (1971)	3,23	3,10	10,90	9,10	6,36	13,97	8,80	17,00	8,00	15,00
Е	Erro(%)- Hanks (1963)	10,00	225,00	166,00	180,00	152,00	107,00	137,00	170,00	122,00	160,00
ingha	Erro(%) - Thomas (1963)	60,35	75,00	75,00	75,00	73,98	73,98	73,98	63,96	63,96	63,96
 В	Erro(%) – Craft. (1962)	91,93	95,00	95,00	95,00	94,60	94,63	94,61	92,57	92,59	92,57
schel- skley	Erro(%) - Jonhson (1959)	2,59	207,00	166,00	166,00	148,31	103,28	133,28	135,05	96,10	127,00
Hers Buc	Erro(%) - Mishra e T. (1971)	3,08	207,00	165,00	165,00	148,14	103,15	133,12	133,80	95,06	125,80

Tabela 43: Erro percentual médio absoluto para as equações de Reynolds crítico utilizadas no escoamento da pasta 2 na temperatura de 15°C.

Tabela 44: Erro percentual médio absoluto para as equações de Reynolds crítico utilizadas no escoamento da pasta 2 na temperatura de 25°C.

Davinal	Bounded artitica nasta 2 (25%)		ANULAR I			ANULAR II			ANULAR III		
Reyllor	us critico - pasta 2 (25 C)		DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3
ver w	Erro(%) - Jonhson (1959)	20,85	52,80	55,60	54,90	47,81	51,42	48,96	48,20	50,79	48,70
pov la	Erro(%) - Mishra e T. (1971)	3,11	43,40	46,70	45,90	41,22	45,29	42,52	33,82	37,13	34,47
В	Erro(%)- Hanks (1963)	4,04	123,00	83,00	92,00	73,57	43,30	63,42	64,96	38,10	59,32
ingha	Erro(%) - Thomas (1963)	50,66	74,00	74,00	74,00	75,75	75,75	75,75	65,01	65,01	65,01
В	Erro(%) - Craft. (1962)	89,97	95,00	95,00	95,00	95,00	95,02	95,01	92,84	92,85	92,84
chel- kley	Erro(%) - Jonhson (1959)	21,16	118,60	79,50	88,50	78,34	45,05	67,21	64,25	33,86	57,91
Herse Bucl	Erro(%) - Mishra e T. (1971)	21,17	118,20	79,20	88,20	78,60	45,26	67,45	64,38	33,96	58,03

Derme	Reynolds crítico - pasta 2 (25°C)		ANULAR I			ANULAR II			ANULAR III		
Reynol	las crítico - pasta 2 (25°C)	Circular de 1	DH1	DH2	DH3	DH1	DH2	DH3	DH1	DH2	DH3
ver w	Erro(%) - Jonhson (1959)	23,30	66,10	67,40	67,10	63,69	65,11	64,14	56,33	57,67	56,59
pov la	Erro(%) - Mishra e T. (1971)	4,44	51,00	52,90	52,40	47,56	49,61	48,21	27,50	29,73	27,94
В	Erro(%)- Hanks (1963)	4,21	84,00	53,00	60,00	27,79	8,77	21,37	44,08	24,22	39,88
ingha	Erro(%) - Thomas (1963)	47,47	67,00	67,00	67,00	63,76	63,76	63,76	51,89	51,89	51,89
B	Erro(%) – Craft. (1962)	89,33	93,00	93,00	93,00	92,60	92,62	92,61	90,20	90,21	90,20
chel- kley	Erro(%) - Jonhson (1959)	32,69	40,70	19,10	24,20	6,38	11,95	0,29	12,66	3,52	9,35
Hers	Erro(%) - Mishra e T. (1971)	33,15	39,80	18,30	23,30	6,00	12,27	0,08	11,95	4,12	8,67

Tabela 45: Erro percentual médio absoluto para as equações de Reynolds crítico utilizadas no escoamento da pasta 2 na temperatura de 60°C.

B8 – Fator de atrito

Corre	Correlações de fator de atrito	Circular 1"	ANULAR I		Ι	ANULAR II			ANULAR III			ERRO MÉDIO		
	pasta 2 (15°C)	Circular 1	DH ₁	DH_2	DH ₃	DH ₁	DH ₂	DH ₃	DH ₁	DH_2	DH ₃	DH_1	DH_2	DH ₃
	Laminar	17,2	22,4	42,1	37,7	20,7	41,7	32,4	18,7	37,0	16,6	20,6	40,3	28,9
	DM Gomes	34,6	27,8	41,1	37,8	35,1	46,1	36,7	27,8	42,0	30,8	30,3	43,1	35,1
r law	OW Gomes	45,8	37,9	49,6	46,7	44,1	53,9	45,9	40,1	51,9	42,6	40,7	51,8	45,1
owe	FS Gomes	45,0	34,7	47,4	44,3	41,4	52,5	44,4	38,0	50,4	40,6	38,0	50,1	43,1
н	Ellis e George	18,2	21,1	35,1	31,5	29,0	39,6	28,9	12,8	29,5	16,3	21,0	34,7	25,6
	Churchill	4,4	18,2	8,8	7,3	9,6	17,4	3,8	18,1	5,5	13,1	15,3	10,6	8,1
	Laminar	8,5	118,3	43,3	58,3	68,5	15,3	51,1	77,4	20,1	62,3	88,1	26,2	57,2
	Darby e Melson	23,5	9,9	18,6	13,6	16,3	35,7	22,4	9,0	25,2	11,0	11,7	26,5	15,7
gham	Tomita	16,1	81,8	43,9	53,8	47,2	12,4	35,5	63,9	27,7	55,8	64,3	28,0	48,4
Bing	Darby <i>et al</i> .	39,8	22,2	36,2	32,2	34,4	49,5	39,1	26,8	41,3	30,1	27,8	42,3	33,8
	Ellis e George	9,2	30,7	6,4	10,6	8,6	19,4	7,6	18,8	7,2	13,7	19,4	11,0	10,7
	Churchill	32,5	73,4	18,5	28,1	29,6	21,8	23,4	59,4	31,9	52,7	54,2	24,1	34,7
	Laminar	6,0	110,6	39,8	56,4	61,7	8,5	41,6	58,0	9,3	47,8	76,7	19,2	48,6
dey	DM Gomes	20,6	64,3	30,8	36,7	49,1	19,5	41,1	51,7	21,2	44,7	55,0	23,8	40,8
-Bucl	OW Gomes	22,3	69,6	34,4	40,9	56,7	24,7	48,2	55,2	23,7	48,1	60,5	27,6	45,7
schel-	FS Gomes	22,9	83,9	43,9	51,6	68,8	32,5	58,6	65,4	30,2	57,4	72,7	35,5	55,9
Hes	Ellis e George	10,5	21,4	5,3	4,9	10,5	17,8	9,3	12,5	12,0	8,6	14,8	11,7	7,6
	Churchill	28,8	61,7	29,4	36,4	24,8	21,9	18,1	55,4	30,4	48,2	47,3	27,2	34,2

Tabela 46: Erro percentual médio absoluto para as equações de fator de atrito utilizadas no escoamento da pasta 2 na temperatura de 15°C

Corre	lações de fator de atrito	Circular 1"		ANULAR	I	A	NULAR	Π	А	NULAR I	П	EF	RRO MÉD	Ю
	pasta 2 (25°C)		DH_1	DH_2	DH ₃	DH ₁	DH_2	DH ₃	DH ₁	DH_2	DH ₃	DH_1	DH_2	DH ₃
	Laminar	15,9	30,0	50,3	42,6	29,7	50,0	42,9	29,9	44,4	31,3	29,9	48,3	39,0
	DM Gomes	39,4	31,7	43,8	41,9	27,3	39,5	29,4	38,3	50,2	40,8	32,4	44,5	37,4
r law	OW Gomes	52,5	45,4	55,2	53,6	39,7	50,1	41,8	53,1	62,2	55,0	46,1	55,8	50,2
oowe	FS Gomes	51,6	43,2	53,7	51,8	37,8	49,4	41,2	52,1	61,5	54,1	44,4	54,9	49,0
_	Ellis e George	11,7	14,1	24,2	22,2	11,3	23,7	10,5	4,5	21,1	6,7	10,0	23,0	13,1
	Churchill	8,9	22,5	5,9	9,1	19,5	3,2	13,9	18,7	6,1	13,9	20,2	5,1	12,3
	Laminar	14,4	101,5	35,3	49,8	52,1	3,1	34,8	52,4	5,8	43,2	68,7	14,8	42,6
	Darby e Melson	17,1	17,5	6,9	6,3	6,7	17,0	4,0	6,9	17,9	4,0	10,4	13,9	4,8
gham	Tomita	20,1	104,3	59,5	67,4	78,7	37,5	63,3	73,8	33,0	64,2	85,6	43,4	65,0
Bing	Darby et al.	34,7	9,1	26,9	24,2	17,1	34,8	24,2	17,2	35,5	21,9	14,5	32,4	23,4
	Ellis e George	5,6	47,2	15,6	21,1	30,2	3,4	19,1	28,2	3,3	21,2	35,2	7,4	20,5
	Churchill	36,3	82,7	52,1	57,1	82,1	50,9	67,2	87,2	46,8	74,9	84,0	49,9	66,4
	Laminar	14,1	104,1	37,3	51,6	49,9	2,4	32,7	51,4	5,5	38,8	68,5	15,1	41,0
dey	DM Gomes	33,0	96,5	53,6	63,3	95,2	52,0	80,5	89,4	47,5	82,8	93,7	51,0	75,5
-Bucl	OW Gomes	36,8	103,4	58,6	68,8	105,6	59,7	90,0	98,9	54,5	91,8	102,6	57,6	83,5
schel	FS Gomes	36,0	117,3	67,8	79,0	117,3	66,9	100,2	108,3	60,1	99,9	114,3	64,9	93,0
Hes	Ellis e George	6,1	40,3	12,0	17,2	33,3	3,8	23,0	29,2	4,3	24,3	34,3	6,7	21,5
	Churchill	36,1	69,8	54,7	59,0	81,4	42,9	66,3	85,5	49,6	82,4	78,9	49,1	69,2

Tabela 47: Erro percentual médio absoluto para as equações de fator de atrito utilizadas no escoamento da pasta 2 na temperatura de 25°C

Correlações de fator de atrito		Circular 1"	ANULAR I		A	ANULAR II			ANULAR III			ERRO MÉDIO		
	pasta 2 (60°C)		DH_1	DH ₂	DH ₃	DH_1	DH ₂	DH ₃	DH_1	DH_2	DH ₃	DH_1	DH ₂	DH ₃
	Laminar	23,3	24,4	36,7	32,8	23,9	43,1	37,3	20,8	35,8	26,6	23,0	38,5	32,2
	DM Gomes	33,7	20,3	35,6	32,1	39,5	51,0	43,3	39,4	51,0	41,9	33,1	45,9	39,1
r law	OW Gomes	48,4	41,7	52,9	50,3	55,7	64,2	58,5	57,8	65,9	59,6	51,7	61,0	56,1
owe	FS Gomes	47,3	39,5	51,2	48,5	54,4	63,4	57,6	55,9	64,7	58,0	49,9	59,8	54,7
¥4	Ellis e George	8,3	35,3	16,4	20,0	6,2	14,4	4,6	15,6	7,8	12,2	19,0	12,9	12,3
	Churchill	22,4	68,3	36,0	43,4	26,4	6,2	17,7	42,3	14,4	35,7	45,7	18,9	32,3
	Laminar	14,0	140,4	64,0	80,3	49,3	5,2	33,0	64,2	15,2	53,9	84,6	28,1	55,7
	Darby e Melson	8,0	63,1	28,4	36,3	10,4	12,7	3,5	20,9	5,6	16,8	31,5	15,6	18,9
sham	Tomita	27,5	177,7	113,6	128,0	76,5	36,3	62,8	94,5	51,0	85,9	116,2	66,9	92,2
Bing	Darby et al.	26,5	28,0	4,5	7,1	13,3	31,4	19,4	7,1	23,2	8,4	16,1	19,7	11,6
	Ellis e George	10,7	101,8	56,7	66,8	32,8	4,7	23,2	44,9	15,1	39,3	59,8	25,5	43,1
	Churchill	44,1	179,6	126,1	138,9	100,1	56,2	85,9	108,0	73,0	104,0	129,2	85,1	109,6
	Laminar	16,8	95,9	37,2	49,9	45,1	5,4	27,5	38,0	5,6	29,7	59,6	16,1	35,7
kley	DM Gomes	21,5	122,7	75,4	86,1	74,9	36,1	61,0	57,4	24,1	50,3	85,0	45,2	65,8
-Bucl	OW Gomes	18,7	119,9	72,8	83,6	78,0	37,9	63,4	52,7	20,2	45,8	83,5	43,6	64,3
schel-	FS Gomes	17,3	128,0	77,7	89,1	82,2	39,2	66,0	54,6	21,0	47,5	88,3	46,0	67,5
Hesc	Ellis e George	9,4	75,1	38,8	47,1	27,7	2,9	18,3	31,9	5,4	26,3	44,9	15,7	30,6
	Churchill	36,6	149,6	101,0	112,1	86,3	46,6	74,8	85,7	45,3	77,1	107,2	64,3	88,0

Tabela 48: Erro percentual médio absoluto para as equações de fator de atrito utilizadas no escoamento da pasta 2 na temperatura de 25°C

C – Dados experimentais obtidos para pasta 3 C1- Geometria Circular

Da	dos da unida			
Rotação da	$\langle W \rangle$	ρ	Т	ΔP
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)
100	42	1,4549	15	0,11
150	61	1,4494	15	0,16
200	82	1,4450	15	0,21
250	104	1,4505	15	0,25
300	125	1,4553	14	0,28
350	146	1,4507	14	0,32
400	166	1,4527	14	0,36
450	189	1,4538	13	0,40
500	210	1,4559	13	0,44
600	251	1,4566	14	0,51
700	293	1,4577	14	0,57
800	332	1,4599	15	0,66
900	374	1,4608	15	0,76
1000	410	1,4605	16	1,02
1100	449	1,4694	17	1,48
1200	482	1,4701	18	1,75
1300	515	1,4699	19	1,98
1400	548	1,4687	19	2,18
1500	583	1,4649	20	2,37

Tabela 49: Dados experimentais para geometria circular no escoamento da pasta 3 a 15°C. Dados da unidade experimental

Dados da unidade experimental									
Rotação da	<w></w>	ρ	Т	ΔP					
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)					
100	42	1,4996	24	0,07					
150	65	1,4986	24	0,10					
200	86	1,4985	24	0,13					
250	108	1,4946	23	0,16					
300	130	1,4969	23	0,19					
350	152	1,4966	23	0,22					
400	173	1,4935	23	0,24					
450	195	1,4959	24	0,27					
500	218	1,4940	24	0,30					
600	260	1,4970	24	0,37					
700	303	1,4997	24	0,57					
800	342	1,5014	25	0,88					
900	384	1,5001	25	1,10					
1000	423	1,5016	25	1,32					
1100	461	1,5015	24	1,51					
1200	499	1,5024	23	1,71					
1300	535	1,5051	23	1,93					
1400	571	1,5049	23	2,13					
1500	605	1,5036	24	2,34					

Tabela 50: Dados experimentais para geometria circular no escoamento da pasta 3 a 25°C.

Figura 72: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular no escoamento da pasta 3 a 25°C.

D		aue experi	mental	
Rotação da	<w> ,</w>	ρ	Т	ΔP
bomba (rpm)	(kg.min^{-1})	$(kg.l^{-1})$	(°C)	(bar)
100	37	1,5201	61	0,05
150	58	1,5124	61	0,06
200	83	1,5121	59	0,07
250	106	1,5147	58	0,08
300	127	1,5118	58	0,10
350	148	1,5166	58	0,11
400	170	1,5131	58	0,13
450	192	1,5148	59	0,23
500	213	1,5116	60	0,32
600	248	1,5095	60	0,44
700	289	1,5108	60	0,56
800	335	1,5129	59	0,70
900	378	1,5161	59	0,85
1000	420	1,5154	60	0,99
1100	460	1,5138	60	1,14
1200	501	1,5146	60	1,30
1300	541	1,5138	61	1,46
1400	579	1,5105	62	1,61
1500	616	1,5064	63	1,76

Tabela 51: Dados experimentais para geometria circular no escoamento da pasta 3 a 60°C.

Figura 73: Gráfico diferencial de pressão versus vazão de escoamento para geometria circular no escoamento da pasta 3 a 60°C.

C2 – Dados experimentais obtidos para pasta 3 C1- Geometria anular I

		adob da ama	ade emperi	memai		
	Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)	
-	100	33	1,4556	13	0,80	
	150	47	1,4485	13	1,14	
	200	61	1,4511	13	1,45	
	250	75	1,4571	13	1,73	
	300	89	1,4610	13	2,00	
	350	101	1,4630	13	2,26	
	400	114	1,4597	13	2,51	
	450	127	1,4581	14	2,70	
	500	140	1,4596	14	2,88	
	600	165	1,4623	14	3,30	
	700	189	1,4600	15	3,72	
	800	214	1,4630	15	4,14	
	900	237	1,4670	15	4,51	
	1000	268	1,4662	17	4,78	
	1100	292	1,4714	18	5,16	
	1200	318	1,4713	18	5,42	

Tabela 52: Dados experimentais para geometria anular I no escoamento da pasta 3 a 15°C. Dados da unidade experimental

Figura 74: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I no escoamento da pasta 3 a 15°C.

Dados da unidade experimental								
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)				
100	42,5	1,9564	24	0,36				
150	73,7	1,9542	23	0,56				
200	98,8	1,9565	22	0,75				
250	126,1	1,9578	21	0,95				
300	146,1	1,9511	21	1,15				
350	177,4	1,9529	22	1,31				
400	197,6	1,9576	22	1,50				
450	216,8	1,9550	23	1,72				
500	238,1	1,9479	23	1,91				
600	284,7	1,9454	23	2,37				
700	329,3	1,9485	23	2,79				
800	365,8	1,9540	23	3,33				
900	401,1	1,9530	22	3,75				
1000	431,9	1,9528	23	4,26				
1100	464,3	1,9517	24	4,75				
1200	500,1	1,9461	25	5,34				
1300	530,4	1,9427	26	6,02				
1400	563,0	1,9425	27	6,53				

Tabela 53: Dados experimentais para geometria anular I no escoamento da pasta 3 a 25°C.

Figura 75: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular I no escoamento da pasta 3 a 25°C.

	Dados da unidade experimental								
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)					
100	36,0	1,7421	59	0,36					
150	57,0	1,7407	59	0,53					
200	79,5	1,7322	59	0,68					
250	103,0	1,7281	59	0,84					
300	118,5	1,7230	59	0,96					
350	142,5	1,7276	59	1,12					
400	163,3	1,7270	60	1,27					
450	183,3	1,7237	60	1,44					
500	195,7	1,7257	60	1,60					
600	236,0	1,7310	60	1,95					
700	274,0	1,7321	61	2,29					
800	310,0	1,7403	59	2,68					
900	344,5	1,7403	58	3,11					
1000	377,5	1,7368	58	3,56					
1100	408,0	1,7347	59	4,05					
1200	437,0	1,7272	59	4,50					
1300	464,0	1,7332	59	4,89					
1400	493,0	1,7331	59	5,33					
1500	517,0	1,7331	60	5,78					

Tabela 54: Dad<u>os experimentais para geometria anular I no escoamento da</u> pasta 3 a 60°C.

C3 – Dados experimentais obtidos para pasta 3 C2- Geometria anular II

Dados da unidade experimental				
Rotação da	<w></w>	ρ	Т	ΔP
bomba (rpm)	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)
100	40	1,4559	16	0,52
150	59	1,4569	15	0,75
200	77	1,4526	15	0,97
250	95	1,4638	14	1,19
300	112	1,4649	14	1,40
350	128	1,4654	14	1,58
400	145	1,4630	14	1,77
450	160	1,4641	14	1,93
500	175	1,4661	14	2,09
600	203	1,4651	14	2,40
700	231	1,4668	14	2,67
800	257	1,4682	14	2,90
900	281	1,4687	15	3,12
1000	307	1,4706	15	3,36
1100	331	1,4714	16	3,55
1200	357	1,4734	16	3,73

Tabela 55: Dados experimentais para geometria anular II no escoamento da pasta 3 a 15°C.

Figura 76: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 3 a 15°C.

Dados da unidade experimental				
Rotação	<w></w>	ρ	Т	ΔP
da bomba	(kg.min ⁻¹)	$(kg.l^{-1})$	(°C)	(bar)
(rpm)				~ /
100	38,0	1,5635	22	0,33
150	58,0	1,5598	22	0,50
200	79,0	1,5644	22	0,63
250	99,5	1,5582	22	0,76
300	113,0	1,5682	22	0,90
350	132,0	1,5611	22	1,03
400	153,0	1,5618	22	1,16
450	173,0	1,5640	22	1,30
500	189,0	1,5643	22	1,43
600	224,0	1,5651	22	1,68
700	258,0	1,5634	23	1,91
800	289,0	1,5642	23	2,17
900	320,5	1,5646	23	2,45
1000	353,0	1,5640	24	2,67
1100	384,0	1,5626	25	2,82
1200	413,0	1,5610	25	3,13
1300	440,0	1,5637	25	3,40
1400	467,0	1,5635	25	3,77
1500	490,0	1,5647	25	4,21
1600	515,5	1,5661	25	4,53
1700	538,0	1,5643	25	4,85
1800	560,0	1,5630	25	5,22

Tabela 56: Dados experimentais para geometria anular II no escoamento da pasta 3 a 25°C.

Dados da unidade experimental				
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)
100	36	1,5246	60	0,20
150	57	1,5251	60	0,29
200	82	1,5193	60	0,36
250	105	1,5238	60	0,44
300	126	1,5239	60	0,53
350	146	1,5230	60	0,62
400	167	1,5198	60	0,70
450	188	1,5189	58	0,81
500	209	1,5199	57	0,94
600	250	1,5139	57	1,18
700	286	1,5104	58	1,46
800	325	1,5172	59	1,80
900	360	1,5155	59	2,13
1000	395	1,5110	59	2,44
1100	426	1,5093	60	2,78
1200	461	1,5089	61	3,22
1300	491	1,5030	63	3,53
1400	520	1,5008	63	3,85
1500	545	1,4968	62	4,24

Tabela 57: Dados experimentais para geometria anular II no escoamento da pasta 3 a 60°C.

Figura 77: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular II no escoamento da pasta 3 a 60°C.

C4 – Geometria anular III

Dados da unidade experime			mental	
Rotação da	<w></w>	ρ	Т	ΔP
bomba (rpm)	(kg.min^{-1})	$(kg.l^{-1})$	(°C)	(bar)
100	41	1,5919	15	0,30
150	61	1,5971	15	0,42
200	81	1,5961	15	0,54
250	100	1,5934	15	0,68
300	120	1,5936	15	0,80
350	139	1,5948	15	0,92
400	157	1,5918	15	1,06
450	175	1,5918	15	1,18
500	192	1,5909	15	1,33
600	227	1,5910	15	1,59
700	260	1,5927	15	1,89
800	291	1,5936	15	2,17
900	322	1,5930	15	2,45
1000	351	1,5943	15	2,76
1100	379	1,5944	15	3,07
1200	407	1,5937	15	3,32
1300	434	1,5942	16	3,69
1400	459	1,5935	15	4,03
1500	483	1,5949	16	4,41
1600	507	1,5930	16	4,77
1700	530	1,5947	16	5,02
1800	555	1.5953	16	5.43

Tabela 58: Dad<u>os experimentais para geometria anular III no escoamento da</u> pasta 3 a 15°C.

Figura 78: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular III no escoamento da pasta 3 a 15°C.

Dados da unidade experimental				
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)
100	38	1,567	22	0,22
150	59	1,5695	22	0,41
200	80	1,5738	22	0,53
250	100	1,5729	22	0,64
300	121	1,5623	23	0,76
350	140	1,5746	23	0,81
400	159	1,5740	22	0,98
450	178	1,5752	22	1,09
500	196	1,5757	22	1,21
600	231	1,5740	22	1,45
700	266	1,5751	22	1,71
800	298	1,5752	22	1,98
900	329	1,5747	23	2,26
1000	360	1,5742	23	2,50
1100	389	1,5717	24	2,83
1200	416	1,5716	24	3,20
1300	441	1,5704	24	3,55
1400	468	1,5706	24	3,88
1500	494	1,5712	25	4,24
1600	518	1,5713	25	4,64
1700	541	1,5706	25	5,20
1800	563	1,5704	25	5,51

Tabela 59: Dados experimentais para geometria anular III no escoamento da pasta 3 a 25°C.

Figura 79: Gráfico diferencial de pressão versus vazão de escoamento para geometria anular III no escoamento da pasta 3 a 25°C.

Dados da unidade experimental				
Rotação da bomba (rpm)	<w> (kg.min⁻¹)</w>	ρ (kg.l ⁻¹)	T (°C)	ΔP (bar)
100	36	1,5074	59	0,17
150	58	1,5105	59	0,25
200	81	1,4950	59	0,32
250	103	1,4979	59	0,40
300	126	1,5008	59	0,48
350	147	1,4995	59	0,57
400	167	1,4958	59	0,67
450	188	1,4964	58	0,80
500	208	1,4945	58	0,91
600	248	1,4927	58	1,17
700	285	1,4934	58	1,47
800	328	1,4954	59	1,82
900	365	1,4979	60	2,18
1000	402	1,4902	60	2,56
1100	437	1,4887	58	2,91
1200	470	1,4856	58	3,29
1300	501	1,4831	59	3,66
1400	533	1,4823	60	4,03
1500	563	1,4810	60	4,40

Tabela 60: Dados experimentais para geometria anular III no escoamento da pasta 3 a 60°C.